Skip to main content

Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond




Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond



This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores.
The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical systems. By providing an up-to-date survey of small systems physics, the text serves as both a valuable reference for experienced researchers and as an ideal starting point for graduate-level students entering this newly emerging research field.

Part I: Fluctuation relations
Fluctuation relations: A pedagogical overview
Fluctuation Relations and the foundations of statistical thermodynamics: A deterministic approach and numerical demonstration
Fluctuation relations in small systems: Exact results from the deterministic approach
Measuring out of equilibrium fluctuations
Recent progress in fluctuation theorems and free energy recovery
Information thermodynamics: Maxwell's demon in nonequilibrium dynamics
Time-reversal symmetry relations for currents in nonequilibrium stochastic and quantum systems
Anomalous fluctuation relations

Part II: Beyond fluctuation relations
Out-of-equilibrium generalized fluctuation-disspation relations
Anomalous thermal transport in nanostructures
Large deviation approach to nonequilibrium systems
Lyapunov modes in extended systems
Study of single molecule dynamics in mesoporous systems, glasses and living cells