Skip to main content

Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edition

Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edition

John H. Seinfeld, Spyros N. Pandis

ISBN: 978-1-118-94740-1

Apr 2016

1152 pages

In Stock

$149.95

Description

Expanded and updated with new findings and new features

  • New chapter on Global Climate providing a self-contained treatment of climate forcing, feedbacks, and climate sensitivity
  • New chapter on Atmospheric Organic Aerosols and new treatment of the statistical method of Positive Matrix Factorization
  • Updated treatments of physical meteorology, atmospheric nucleation, aerosol-cloud relationships, chemistry of biogenic hydrocarbons
  • Each topic developed from the fundamental science to the point of application to real-world problems
  • New problems at an introductory level to aid in classroom teaching

Related Resources

Instructor

Request an Evaluation Copy for this title

View Instructor Companion Site

Contact your Rep for all inquiries

Preface to the First Edition xxiii

Preface to the Third Edition xxv

PART I | The Atmosphere and Its Constituents

Chapter 1 | The Atmosphere 3

1.1 History and Evolution of Earth’s Atmosphere 3

1.2 Climate 5

1.3 Layers of the Atmosphere 5

1.4 Pressure in the Atmosphere 7

1.4.1 Units of Pressure 7

1.4.2 Variation of Pressure with Height in the Atmosphere 7

1.5 Temperature in the Atmosphere 10

1.6 Expressing the Amount of a Substance in the Atmosphere 10

1.7 Airborne Particles 14

1.8 Spatial and Temporal Scales of Atmospheric Processes 14

Problems 16

References 17

Chapter 2 | Atmospheric Trace Constituents 18

2.1 Atmospheric Lifetime 19

2.2 Sulfur-Containing Compounds 23

2.2.1 Dimethyl Sulfide (CH3SCH3) 26

2.2.2 Carbonyl Sulfide (OCS) 26

2.2.3 Sulfur Dioxide (SO2) 27

2.3 Nitrogen-Containing Compounds 27

2.3.1 Nitrous Oxide (N2O) 28

2.3.2 Nitrogen Oxides (NOx=NO+NO2) 29

2.3.3 Reactive Odd Nitrogen (NOy) 30

2.3.4 Ammonia (NH3) 31

2.3.5 Amines 32

2.4 Carbon-Containing Compounds 32

2.4.1 Classification of Hydrocarbons 32

2.4.2 Methane 34

2.4.3 Volatile Organic Compounds 36

2.4.4 Biogenic Hydrocarbons 36

2.4.5 Carbon Monoxide 39

2.4.6 Carbon Dioxide 40

2.5 Halogen-Containing Compounds 40

2.5.1 Methyl Chloride (CH3Cl) 42

2.5.2 Methyl Bromide (CH3Br) 42

2.6 Atmospheric Ozone 44

2.7 Particulate Matter (Aerosols) 47

2.7.1 Stratospheric Aerosol 48

2.7.2 Chemical Components of Tropospheric Aerosol 48

2.7.3 Cloud Condensation Nuclei (CCN) 49

2.7.4 Sizes of Atmospheric Particles 49

2.7.5 Carbonaceous Particles 51

2.7.6 Mineral Dust 53

2.7.7 Biomass Burning 53

2.7.8 Summary of Atmospheric Particulate Matter 54

2.8 Mercury 55

2.9 Emission Inventories 55

Appendix 2.1 US Air Pollution Legislation 56

Appendix 2.2 Hazardous Air Pollutants (Air Toxics) 57

Problems 59

References 61

PART II | Atmospheric Chemistry

Chapter 3 | Chemical Kinetics 69

3.1 Order of Reaction 69

3.2 Theories of Chemical Kinetics 71

3.2.1 Collision Theory 71

3.2.2 Transition State Theory 74

3.2.3 Potential Energy Surface for a Bimolecular Reaction 75

3.3 The Pseudo-Steady-State Approximation 76

3.4 Reactions of Excited Species 77

3.5 Termolecular Reactions 78

3.6 Chemical Families 81

3.7 Gas–Surface Reactions 83

Problems 84

References 87

Chapter 4 | Atmospheric Radiation and Photochemistry 88

4.1 Radiation 88

4.2 Radiative Flux in the Atmosphere 91

4.3 Beer − Lambert Law and Optical Depth 93

4.4 Actinic Flux 95

4.5 Atmospheric Photochemistry 97

4.6 Absorption of Radiation by Atmospheric Gases 100

4.7 Absorption by O2 and O3 105

4.8 Photolysis Rate as a Function of Altitude 109

4.9 Photodissociation of O3 to Produce O and O(1D) 112

4.10 Photodissociation of NO2 114

Problems 117

References 117

Chapter 5 | Chemistry of the Stratosphere 119

5.1 Chapman Mechanism 122

5.2 Nitrogen Oxide Cycles 129

5.2.1 Stratospheric Source of NOx from N2O 129

5.2.2 NOx Cycles 131

5.3 HOx Cycles 134

5.4 Halogen Cycles 139

5.4.1 Chlorine Cycles 140

5.4.2 Bromine Cycles 143

5.5 Reservoir Species and Coupling of the Cycles 144

5.6 Ozone Hole 146

5.6.1 Polar Stratospheric Clouds (PSCs) 149

5.6.2 PSCs and the Ozone Hole 150

5.6.3 Arctic Ozone Hole 153

5.7 Heterogeneous (Nonpolar) Stratospheric Chemistry 155

5.7.1 The Stratospheric Aerosol Layer 155

5.7.2 Heterogeneous Hydrolysis of N2O5 155

5.7.3 Effect of Volcanoes on Stratospheric Ozone 160

5.8 Summary of Stratospheric Ozone Depletion 162

5.9 Transport and Mixing in the Stratosphere 165

5.10 Ozone Depletion Potential 167

Problems 168

References 173

Chapter 6 | Chemistry of the Troposphere 175

6.1 Production of Hydroxyl Radicals in the Troposphere 176

6.2 Basic Photochemical Cycle of NO2, NO, and O3 179

6.3 Atmospheric Chemistry of Carbon Monoxide 181

6.3.1 Low-NOx Limit 183

6.3.2 High-NOx Limit 184

6.3.3 Ozone Production Efficiency 184

6.3.4 Theoretical Maximum Yield of Ozone from CO Oxidation 188

6.4 Atmospheric Chemistry of Methane 188

6.5 The NOx and NOy Families 192

6.5.1 Daytime Behavior 192

6.5.2 Nighttime Behavior 193

6.6 Ozone Budget of the Troposphere and Role of NOx 195

6.6.1 Ozone Budget of the Troposphere 195

6.6.2 Role of NOx 195

6.6.3 Global Hydroxyl Radical Budget 197

6.7 Tropospheric Reservoir Molecules 203

6.7.1 H2O2, CH3OOH, and Hydroperoxides 203

6.7.2 Nitrous Acid (HONO) 204

6.7.3 Peroxyacyl Nitrates (PANs) 204

6.8 Relative Roles of VOC and NOx in Ozone Formation 208

6.8.1 Importance of the VOC/NOx Ratio 208

6.8.2 Ozone Isopleth Plot 209

6.8.3 Weekend Ozone Effect 211

6.9 Simplified Organic/NOx Chemistry 212

6.10 Chemistry of Nonmethane Organic Compounds in the Troposphere 214

6.10.1 Alkanes 215

6.10.2 Alkenes 222

6.10.3 Aromatics 228

6.10.4 Aldehydes 230

6.10.5 Ketones 230

6.10.6 Ethers 231

6.10.7 Alcohols 231

6.10.8 Tropospheric Lifetimes of Organic Compounds 232

6.11 Atmospheric Chemistry of Biogenic Hydrocarbons 233

6.11.1 Atmospheric Chemistry of Isoprene 233

6.11.2 Monoterpenes (α-Pinene) 241

6.12 Atmospheric Chemistry of Reduced Nitrogen Compounds 244

6.12.1 Amines 245

6.12.2 Nitriles 246

6.12.3 Nitrites 246

6.13 Atmospheric Chemistry (Gas Phase) of Sulfur Compounds 246

6.13.1 Sulfur Oxides 246

6.13.2 Reduced Sulfur Compounds (Dimethyl Sulfide) 247

6.14 Tropospheric Chemistry of Halogen Compounds 249

6.14.1 Chemical Cycles of Halogen Species 249

6.14.2 Tropospheric Chemistry of CFC Replacements: Hydrofluorocarbons (HFCs) and Hydrochlorofluorocarbons (HCFCs) 251

6.15 Atmospheric Chemistry of Mercury 253

Appendix 6 Organic Functional Groups 254

Problems 256

References 259

Chapter 7 | Chemistry of the Atmospheric Aqueous Phase 265

7.1 Liquid Water in the Atmosphere 265

7.2 Absorption Equilibria and Henry’s Law 268

7.3 Aqueous-Phase Chemical Equilibria 271

7.3.1 Water 271

7.3.2 Carbon Dioxide–Water Equilibrium 272

7.3.3 Sulfur Dioxide–Water Equilibrium 274

7.3.4 Ammonia–Water Equilibrium 278

7.3.5 Nitric Acid–Water Equilibrium 280

7.3.6 Equilibria of Other Important Atmospheric Gases 281

7.4 Aqueous-Phase Reaction Rates 284

7.5 S(IV)–S(VI) Transformation and Sulfur Chemistry 286

7.5.1 Oxidation of S(IV) by Dissolved O3 286

7.5.2 Oxidation of S(IV) by Hydrogen Peroxide 289

7.5.3 Oxidation of S(IV) by Organic Peroxides 290

7.5.4 Uncatalyzed Oxidation of S(IV) by O2 291

7.5.5 Oxidation of S(IV) by O2 Catalyzed by Iron and Manganese 291

7.5.6 Comparison of Aqueous-Phase S(IV) Oxidation Paths 293

7.6 Dynamic Behavior of Solutions with Aqueous-Phase Chemical Reactions 295

7.6.1 Closed System 296

7.6.2 Calculation of Concentration Changes in a Droplet with Aqueous-Phase Reactions 298

Appendix 7.1 Thermodynamic and Kinetic Data 301

Appendix 7.2 Additional Aqueous-Phase Sulfur Chemistry 305

7A.1 S(IV) Oxidation by the OH Radical 305

7A.2 Oxidation of S(IV) by Oxides of Nitrogen 308

7A.3 Reaction of Dissolved SO2 with HCHO 309

Appendix 7.3 Aqueous-Phase Nitrite and Nitrate Chemistry 311

7A.4 NOx Oxidation 311

7A.5 Nitrogen Radicals 311

Appendix 7.4 Aqueous-Phase Organic Chemistry 312

Appendix 7.5 Oxygen and Hydrogen Chemistry 313

Problems 314

References 317

PART III | Aerosols

Chapter 8 | Properties of the Atmospheric Aerosol 325

8.1 The Size Distribution Function 325

8.1.1 The Number Distribution nN(Dp) 328

8.1.2 The Surface Area, Volume, and Mass Distributions 330

8.1.3 Distributions Based on ln Dp and log Dp 331

8.1.4 Relating Size Distributions Based on Different Independent Variables 333

8.1.5 Properties of Size Distributions 334

8.1.6 Definition of the Lognormal Distribution 335

8.1.7 Plotting the Lognormal Distribution 338

8.1.8 Properties of the Lognormal Distribution 339

8.2 Ambient Aerosol Size Distributions 342

8.2.1 Urban Aerosols 343

8.2.2 Marine Aerosols 344

8.2.3 Rural Continental Aerosols 347

8.2.4 Remote Continental Aerosols 348

8.2.5 Free Tropospheric Aerosols 348

8.2.6 Polar Aerosols 349

8.2.7 Desert Aerosols 349

8.3 Aerosol Chemical Composition 352

8.4 Spatiotemporal Variation 354

Problems 357

References 359

Chapter 9 | Dynamics of Single Aerosol Particles 362

9.1 Continuum and Noncontinuum Dynamics: the Mean Free Path 362

9.1.1 Mean Free Path of a Pure Gas 363

9.1.2 Mean Free Path of a Gas in a Binary Mixture 365

9.2 The Drag on a Single Particle: Stokes’ Law 368

9.2.1 Corrections to Stokes’ Law: the Drag Coefficient 371

9.2.2 Stokes’ Law and Noncontinuum Effects: Slip Correction Factor 371

9.3 Gravitational Settling of an Aerosol Particle 372

9.4 Motion of an Aerosol Particle in an External Force Field 376

9.5 Brownian Motion of Aerosol Particles 376

9.5.1 Particle Diffusion 379

9.5.2 Aerosol Mobility and Drift Velocity 381

9.5.3 Mean Free Path of an Aerosol Particle 384

9.6 Aerosol and Fluid Motion 385

9.6.1 Motion of a Particle in an Idealized Flow (90° Corner) 386

9.6.2 Stop Distance and Stokes Number 387

9.7 Equivalent Particle Diameters 388

9.7.1 Volume Equivalent Diameter 388

9.7.2 Stokes Diameter 390

9.7.3 Classical Aerodynamic Diameter 391

9.7.4 Electrical Mobility Equivalent Diameter 393

Problems 393

References 394

Chapter 10 | Thermodynamics of Aerosols 396

10.1 Thermodynamic Principles 396

10.1.1 Internal Energy and Chemical Potential 396

10.1.2 The Gibbs Free Energy G 398

10.1.3 Conditions for Chemical Equilibrium 400

10.1.4 Chemical Potentials of Ideal Gases and Ideal-Gas Mixtures 402

10.1.5 Chemical Potential of Solutions 404

10.1.6 The Equilibrium Constant 408

10.2 Aerosol Liquid Water Content 409

10.2.1 Chemical Potential of Water in Atmospheric Particles 411

10.2.2 Temperature Dependence of the DRH 412

10.2.3 Deliquescence of Multicomponent Aerosols 415

10.2.4 Crystallization of Single- and Multicomponent Salts 419

10.3 Equilibrium Vapor Pressure Over a Curved Surface: the Kelvin Effect 419

10.4 Thermodynamics of Atmospheric Aerosol Systems 423

10.4.1 The H2SO4–H2O System 423

10.4.2 The Sulfuric Acid–Ammonia–Water System 427

10.4.3 The Ammonia–Nitric Acid–Water System 430

10.4.4 The Ammonia–Nitric Acid–Sulfuric Acid–Water System 434

10.4.5 Other Inorganic Aerosol Species 439

10.4.6 Organic Aerosol 440

10.5 Aerosol Thermodynamic Models 440

Problems 442

References 443

Chapter 11 | Nucleation 448

11.1 Classical Theory of Homogeneous Nucleation: Kinetic Approach 449

11.1.1 The Forward Rate Constant βi 452

11.1.2 The Reverse Rate Constant γi 453

11.1.3 Derivation of the Nucleation Rate 453

11.2 Classical Homogeneous Nucleation Theory: Constrained Equilibrium Approach 457

11.2.1 Free Energy of i-mer Formation 457

11.2.2 Constrained Equilibrium Cluster Distribution 459

11.2.3 The Evaporation Coefficient γi 461

11.2.4 Nucleation Rate 461

11.3 Recapitulation of Classical Theory 464

11.4 Experimental Measurement of Nucleation Rates 465

11.4.1 Upward Thermal Diffusion Cloud Chamber 466

11.4.2 Fast Expansion Chamber 466

11.4.3 Turbulent Mixing Chambers 467

11.5 Modifications of the Classical Theory and More Rigorous Approaches 467

11.6 Binary Homogeneous Nucleation 468

11.7 Binary Nucleation in the H2SO4–H2O System 473

11.8 Nucleation on an Insoluble Foreign Surface 475

11.9 Ion-Induced Nucleation 478

11.10 Atmospheric New-Particle Formation 480

11.10.1 Molecular Constituency of New Particles 481

11.10.2 New-Particle Growth Rates 482

11.10.3 CLOUD Studies of Atmospheric Nucleation 482

11.10.4 Atmospheric Nucleation by Organic Species 487

Appendix 11 The Law of Mass Action 487

Problems 489

References 490

Chapter 12 | Mass Transfer Aspects of Atmospheric Chemistry 493

12.1 Mass and Heat Transfer to Atmospheric Particles 493

12.1.1 The Continuum Regime 493

12.1.2 The Kinetic Regime 497

12.1.3 The Transition Regime 497

12.1.4 The Accommodation Coefficient 500

12.2 Mass Transport Limitations in Aqueous-Phase Chemistry 503

12.2.1 Characteristic Time for Gas-Phase Diffusion to a Particle 505

12.2.2 Characteristic Time to Achieve Equilibrium at the Gas–Liquid Interface 506

12.2.3 Characteristic Time of Aqueous Dissociation Reactions 508

12.2.4 Characteristic Time of Aqueous-Phase Diffusion in a Droplet 510

12.2.5 Characteristic Time for Aqueous-Phase Chemical Reactions 511

12.3 Mass Transport and Aqueous-Phase Chemistry 511

12.3.1 Gas-Phase Diffusion and Aqueous-Phase Reactions 512

12.3.2 Aqueous-Phase Diffusion and Reaction 514

12.3.3 Interfacial Mass Transport and Aqueous-Phase Reactions 515

12.3.4 Application to the S(IV)–Ozone Reaction 517

12.3.5 Application to the S(IV)–Hydrogen Peroxide Reaction 519

12.3.6 Calculation of Aqueous-Phase Reaction Rates 520

12.3.7 An Aqueous-Phase Chemistry/Mass Transport Model 525

12.4 Mass Transfer to Falling Drops 526

12.5 Characteristic Time for Atmospheric Aerosol Equilibrium 527

12.5.1 Solid Aerosol Particles 528

12.5.2 Aqueous Aerosol Particles 529

Appendix 12 Solution of the Transient Gas-Phase Diffusion Problem: Equations (12.4)–(12.7) 532

Problems 533

References 535

Chapter 13 | Dynamics of Aerosol Populations 537

13.1 Mathematical Representations of Aerosol Size Distributions 537

13.1.1 Discrete Distribution 537

13.1.2 Continuous Distribution 538

13.2 Condensation 538

13.2.1 The Condensation Equation 538

13.2.2 Solution of the Condensation Equation 540

13.3 Coagulation 544

13.3.1 Brownian Coagulation 544

13.3.2 The Coagulation Equation 551

13.3.3 Solution of the Coagulation Equation 553

13.4 The Discrete General Dynamic Equation 557

13.5 The Continuous General Dynamic Equation 558

Appendix 13.1 Additional Mechanisms of Coagulation 560

13A.1 Coagulation in Laminar Shear Flow 560

13A.2 Coagulation in Turbulent Flow 560

13A.3 Coagulation from Gravitational Settling 561

13A.4 Brownian Coagulation and External Force Fields 562

Appendix 13.2 Solution of (13.73) 567

Problems 568

References 571

Chapter 14 | Atmospheric Organic Aerosols 573

14.1 Chemistry of Secondary Organic Aerosol Formation 574

14.1.1 Oxidation State of Organic Compounds 576

14.1.2 Generation of Highly Oxygenated Species by Autoxidation 579

14.2 Volatility of Organic Compounds 582

14.3 Idealized Description of Secondary Organic Aerosol Formation 583

14.3.1 Noninteracting Secondary Organic Aerosol Compounds 583

14.3.2 Formation of Binary Ideal Solution with Preexisting Aerosol 586

14.3.3 Formation of Binary Ideal Solution with Other Organic Vapor 588

14.4 Gas–Particle Partitioning 590

14.4.1 Gas–Particle Equilibrium 590

14.4.2 Effect of Aerosol Water on Gas-Particle Partitioning 594

14.5 Models of SOA Formation and Evolution 596

14.5.1 The Volatility Basis Set 597

14.5.2 Two-Dimensional SOA Models 603

14.6 Primary Organic Aerosol 605

14.7 The Physical State of Organic Aerosols 608

14.8 SOA Particle-Phase Chemistry 610

14.8.1 Particle-Phase Accretion Reactions 612

14.8.2 Heterogeneous Gas-Aerosol Reactions 612

14.9 Aqueous-Phase Secondary Organic Aerosol Formation 615

14.9.1 Gas- versus Aqueous-Phase Routes to SOA 616

14.9.2 Sources of OH Radicals in the Aqueous Phase 618

14.9.3 Glyoxal as a Source of aqSOA 619

14.10 Estimates of the Global Budget of Atmospheric Organic Aerosol 622

14.10.1 Estimate Based on Total VOC Emissions 622

14.10.2 Sulfate Lifetime and Ratio of Organic to Sulfate 622

14.10.3 Atmospheric Burden and Lifetime of SOA 623

14.10.4 Satellite Measurements 623

Problems 623

References 626

Chapter 15 | Interaction of Aerosols with Radiation 633

15.1 Scattering and Absorption of Light by Small Particles 633

15.1.1 Rayleigh Scattering Regime 638

15.1.2 Geometric Scattering Regime 640

15.1.3 Scattering Phase Function 640

15.1.4 Extinction by an Ensemble of Particles 640

15.2 Visibility 644

15.3 Scattering, Absorption, and Extinction Coefficients From Mie Theory 647

15.4 Calculated Visibility Reduction Based on Atmospheric Data 651

Appendix 15 Calculation of Scattering and Extinction Coefficients by Mie Theory 654

Problems 654

References 656

PART IV | Physical and Dynamic Meteorology, Cloud Physics, and Atmospheric Diffusion

Chapter 16 | Physical and Dynamic Meteorology 661

16.1 Temperature in the Lower Atmosphere 661

16.2 Atmospheric Stability 665

16.3 The Moist Atmosphere 670

16.3.1 The Gas Constant for Moist Air 671

16.3.2 Level of Cloud Formation: The Lifting Condensation Level 671

16.3.3 Dew-point and Wet-Bulb Temperatures 673

16.3.4 The Moist Adiabatic Lapse Rate 675

16.3.5 Stability of Moist Air 679

16.3.6 Convective Available Potential Energy (CAPE) 680

16.3.7 Thermodynamic Diagrams 681

16.4 Basic Conservation Equations for the Atmospheric Surface Layer 683

16.4.1 Turbulence 687

16.4.2 Equations for the Mean Quantities 688

16.4.3 Mixing-Length Models for Turbulent Transport 690

16.5 Variation of Wind with Height in the Atmosphere 692

16.5.1 Mean Velocity in the Adiabatic Surface Layer over a Smooth Surface 693

16.5.2 Mean Velocity in the Adiabatic Surface Layer over a Rough Surface 694

16.5.3 Mean Velocity Profiles in the Nonadiabatic Surface Layer 695

16.5.4 The Pasquill Stability Classes—Estimation of L 698

16.5.5 Empirical Equation for the Mean Windspeed 700

Appendix 16.1 Properties of Water and Water Solutions 701

16A.1 Specific Heat of Water and Ice 701

16A.2 Latent Heats of Vaporization and Melting for Water 701

16A.3 Water Surface Tension 701

Appendix 16.2 Derivation of the Basic Equations of Surface-Layer Atmospheric Fluid Mechanics 702

Problems 705

References 706

Chapter 17 | Cloud Physics 708

17.1 Equilibrium of Water Droplets in the Atmosphere 708

17.1.1 Equilibrium of a Pure Water Droplet 708

17.1.2 Equilibrium of a Flat Water Solution 710

17.1.3 Atmospheric Equilibrium of an Aqueous Solution Drop 712

17.1.4 Atmospheric Equilibrium of an Aqueous Solution Drop Containing an Insoluble Substance 717

17.2 Cloud and Fog Formation 719

17.2.1 Isobaric Cooling 720

17.2.2 Adiabatic Cooling 720

17.2.3 A Simplified Mathematical Description of Cloud Formation 721

17.3 Growth Rate of Individual Cloud Droplets 723

17.4 Growth of a Droplet Population 726

17.5 Cloud Condensation Nuclei 730

17.5.1 Ambient CCN 733

17.5.2 The Hygroscopic Parameter Kappa 733

17.6 Cloud Processing of Aerosols 736

17.6.1 Nucleation Scavenging of Aerosols by Clouds 736

17.6.2 Chemical Composition of Cloud Droplets 737

17.6.3 Nonraining Cloud Effects on Aerosol Concentrations 739

17.6.4 Interstitial Aerosol Scavenging by Cloud Droplets 742

17.7 Other Forms of Water in the Atmosphere 743

17.7.1 Ice Clouds 743

17.7.2 Rain 747

Appendix 17 Extended Köhler Theory 751

17A.1 Modified Form of Köhler Theory for a Soluble Trace Gas 751

17A.2 Modified Form of Köhler Theory for a Slightly Soluble Substance 754

17A.3 Modified Form of Köhler Theory for a Surface-Active Solute 755

17A.4 Examples 756

Problems 759

References 760

Chapter 18 | Atmospheric Diffusion 763

18.1 Eulerian Approach 763

18.2 Lagrangian Approach 766

18.3 Comparison of Eulerian and Lagrangian Approaches 767

18.4 Equations Governing the Mean Concentration of Species in Turbulence 767

18.4.1 Eulerian Approaches 767

18.4.2 Lagrangian Approaches 769

18.5 Solution of the Atmospheric Diffusion Equation for an Instantaneous Source 771

18.6 Mean Concentration from Continuous Sources 772

18.6.1 Lagrangian Approach 772

18.6.2 Eulerian Approach 776

18.6.3 Summary of Continuous Point Source Solutions 777

18.7 Statistical Theory of Turbulent Diffusion 778

18.7.1 Qualitative Features of Atmospheric Diffusion 778

18.7.2 Motion of a Single Particle Relative to a Fixed Axis 780

18.8 Summary of Atmospheric Diffusion Theories 783

18.9 Analytical Solutions for Atmospheric Diffusion: the Gaussian Plume Equation and Others 784

18.9.1 Gaussian Concentration Distributions 784

18.9.2 Derivation of the Gaussian Plume Equation as a Solution of the Atmospheric Diffusion Equation 786

18.9.3 Summary of Gaussian Point Source Diffusion Formulas 791

18.10 Dispersion Parameters in Gaussian Models 791

18.10.1 Correlations for σy and σz Based on Similarity Theory 791

18.10.2 Correlations for σy and σz Based on Pasquill Stability Classes 795

18.11 Plume Rise 796

18.12 Functional Forms of Mean Windspeed and Eddy Diffusivities 798

18.12.1 Mean Windspeed 800

18.12.2 Vertical Eddy Diffusion Coefficient Kzz 800

18.12.3 Horizontal Eddy Diffusion Coefficients Kxx and Kyy 803

18.13 Solutions of the Steady-State Atmospheric Diffusion Equation 803

18.13.1 Diffusion from a Point Source 804

18.13.2 Diffusion from a Line Source 805

Appendix 18.1 Further Solutions of Atmospheric Diffusion Problems 807

18A.1 Solution of (18.29)–(18.31) 807

18A.2 Solution of (18.50) and (18.51) 809

18A.3 Solution of (18.59)–(18.61) 810

Appendix 18.2 Analytical Properties of the Gaussian Plume Equation 811

Problems 815

References 823

PART V | Dry and Wet Deposition

Chapter 19 | Dry Deposition 829

19.1 Deposition Velocity 829

19.2 Resistance Model for Dry Deposition 830

19.3 Aerodynamic Resistance 834

19.4 Quasilaminar Resistance 835

19.4.1 Gases 836

19.4.2 Particles 836

19.5 Surface Resistance 839

19.5.1 Surface Resistance for Dry Deposition of Gases to Water 841

19.5.2 Surface Resistance for Dry Deposition of Gases to Vegetation 845

19.6 Measurement of Dry Deposition 849

19.6.1 Direct Methods 849

19.6.2 Indirect Methods 850

19.6.3 Comparison of Methods 851

19.7 Some Comments on Modeling and Measurement of Dry Deposition 851

Problems 852

References 854

Chapter 20 | Wet Deposition 856

20.1 General Representation of Atmospheric Wet Removal Processes 856

20.2 Below-Cloud Scavenging of Gases 860

20.2.1 Below-Cloud Scavenging of an Irreversibly Soluble Gas 861

20.2.2 Below-Cloud Scavenging of a Reversibly Soluble Gas 864

20.3 Precipitation Scavenging of Particles 868

20.3.1 Raindrop–Aerosol Collision Efficiency 870

20.3.2 Scavenging Rates 871

20.4 In-Cloud Scavenging 873

20.5 Acid Deposition 874

20.5.1 Acid Rain Overview 874

20.5.2 Surface Water Acidification 876

20.5.3 Cloudwater Deposition 877

20.5.4 Fogs and Wet Deposition 877

20.6 Acid Deposition Process Synthesis 878

20.6.1 Chemical Species Involved in Acid Deposition 878

20.6.2 Dry versus Wet Deposition 878

20.6.3 Chemical Pathways for Sulfate and Nitrate Production 878

20.6.4 Source–Receptor Relationships 879

20.6.5 Linearity 880

Problems 881

References 886

PART VI | The Global Atmosphere, Biogeochemical Cycles, and Climate

Chapter 21 | General Circulation of the Atmosphere 891

21.1 Hadley Cell 893

21.2 Ferrell Cell and Polar Cell 893

21.3 Coriolis Force 895

21.4 Geostrophic Windspeed 897

21.4.1 Buys Ballot’s Law 899

21.4.2 Ekman Spiral 900

21.5 The Thermal Wind Relation 902

21.6 Stratospheric Dynamics 905

21.7 The Hydrologic Cycle 905

Problems 906

References 907

Chapter 22 | Global Cycles: Sulfur and Carbon 908

22.1 The Atmospheric Sulfur Cycle 908

22.2 The Global Carbon Cycle 912

22.2.1 Carbon Dioxide 912

22.2.2 Compartmental Model of the Global Carbon Cycle 914

22.2.3 Atmospheric Lifetime of CO2 921

22.3 Solution for a Steady-State Four-Compartment Model of the Atmosphere 923

Problems 927

References 929

Chapter 23 | Global Climate 931

23.1 Earth’s Energy Balance 931

23.2 Radiative Forcing 933

23.2.1 Climate Sensitivity 934

23.2.2 Climate Feedbacks 935

23.2.3 Timescales of Climate Change 935

23.3 The Greenhouse Effect 936

23.4 Climate-Forcing Agents 942

23.4.1 Solar Irradiance 942

23.4.2 Greenhouse Gases 945

23.4.3 Radiative Efficiencies of Greenhouse Gases 946

23.4.4 Aerosols 946

23.4.5 Summary of IPCC (2013) Estimated Forcing 947

23.4.6 The Preindustrial Atmosphere 948

23.5 Cosmic Rays and Climate 949

23.6 Climate Sensitivity 950

23.7 Simplified Dynamic Description of Climate Forcing and Response 951

23.7.1 Response to a Perturbation of Earth’s Radiative Equilibrium 951

23.7.2 Physical Interpretation of Feedback Factors 954

23.8 Climate Feedbacks 955

23.8.1 Water Vapor Feedback 955

23.8.2 Lapse Rate Feedback 956

23.8.3 Cloud Feedback 956

23.8.4 Arctic Sea Ice Feedback 958

23.8.5 Summary of Feedbacks 958

23.9 Relative Radiative Forcing Indices 960

23.10 Atmospheric Chemistry and Climate Change 961

23.10.1 Indirect Chemical Impacts 962

23.10.2 Atmospheric Lifetimes and Adjustment Times 963

23.11 Conclusion 964

Problems 965

References 967

Chapter 24 | Aerosols and Climate 970

24.1 Scattering–Absorbing Model of an Aerosol Layer 972

24.2 Cooling Versus Heating of an Aerosol Layer 975

24.3 Scattering Model of an Aerosol Layer for a Nonabsorbing Aerosol 977

24.4 Upscatter Fraction 979

24.5 Optical Depth and Column Forcing 981

24.6 Internal and External Mixtures 985

24.7 Top-of-the-Atmosphere Versus Surface Forcing 987

24.8 Indirect Effects of Aerosols on Climate 990

24.8.1 Stratocumulus Clouds 991

24.8.2 Simplified Model for Cloud Albedo 993

24.8.3 Albedo Susceptibility: Simplified Model 995

24.8.4 Albedo Susceptibility: Additional Considerations 997

24.8.5 A General Equation for Cloud Albedo Susceptibility 999

24.8.6 Estimating Indirect Aerosol Forcing on Climate 1003

Problems 1004

References 1004

PART VII | Chemical Transport Models and Statistical Models

Chapter 25 | Atmospheric Chemical Transport Models 1011

25.1 Introduction 1011

25.1.1 Model Types 1012

25.1.2 Types of Atmospheric Chemical Transport Models 1013

25.2 Box Models 1014

25.2.1 The Eulerian Box Model 1015

25.2.2 A Lagrangian Box Model 1017

25.3 Three-Dimensional Atmospheric Chemical Transport Models 1020

25.3.1 Coordinate System—Uneven Terrain 1020

25.3.2 Initial Conditions 1022

25.3.3 Boundary Conditions 1023

25.4 One-Dimensional Lagrangian Models 1024

25.5 Other Forms of Chemical Transport Models 1026

25.5.1 Atmospheric Diffusion Equation Expressed in Terms of Mixing Ratio 1026

25.5.2 Pressure-Based Coordinate System 1029

25.5.3 Spherical Coordinates 1031

25.6 Numerical Solution of Chemical Transport Models 1031

25.6.1 Coupling Problem—Operator Splitting 1032

25.6.2 Chemical Kinetics 1037

25.6.3 Diffusion 1041

25.6.4 Advection 1042

25.7 Model Evaluation 1046

25.8 Response of Organic and Inorganic Aerosols to Changes in Emission 1047

Problems 1048

References 1050

Chapter 26 | Statistical Models 1051

26.1 Receptor Modeling Methods 1051

26.2 Chemical Mass Balance (CMB) 1054

26.2.1 CMB Evaluation 1058

26.2.2 CMB Resolution 1059

26.2.3 CMB Codes 1059

26.3 Factor Analysis 1059

26.3.1 Principal-Component Analysis (PCA) 1061

26.3.2 Positive Matrix Factorization (PMF) 1064

26.4 Methods Incorporating Wind Information 1067

26.4.1 Potential Source Contribution Function (PSCF) 1068

26.4.2 Empirical Orthogonal Function (EOF) 1070

26.5 Probability Distributions for Air Pollutant Concentrations 1072

26A.1 The Lognormal Distribution 1073

26A.2 The Weibull Distribution 1074

26.6 Estimation of Parameters in the Distributions 1074

26A.1 Method of Quantiles 1075

26A.2 Method of Moments 1076

26.7 Order Statistics of Air Quality Data 1078

26A.1 Basic Notions and Terminology of Order Statistics 1078

26A.2 Extreme Values 1079

26.8 Exceedances of Critical Levels 1080

26.9 Alternative Forms of Air Quality Standards 1080

26.10 Relating Current and Future Air Pollutant Statistical Distributions 1083

Problems 1085

References 1087

Appendixes

Appendix A: | Units and Physical Constants 1091

A.1 SI Base Units 1091

A.2 SI Derived Units 1092

A.3 Fundamental Physical Constants 1094

A.4 Properties of the Atmosphere and Water 1094

A.5 Units for Representing Chemical Reactions 1096

A.6 Concentrations in the Aqueous Phase 1096

A.7 Symbols Denoting Concentration 1097

References 1097

Appendix B: | Rate Constants of Atmospheric Chemical Reactions 1098

References 1106

Appendix C: | Abbreviations 1107

Index 1112