Skip to main content

Ceramic Materials: Processes, Properties, and Applications

Ceramic Materials: Processes, Properties, and Applications

Philippe Boch (Editor), Jean-Claude Nièpce (Editor)

ISBN: 978-0-470-39454-0

Jan 2010, Wiley-ISTE

573 pages

Select type: E-Book

Product not available for purchase

Description

This book is primarily an introduction to the vast family of ceramic materials. The first part is devoted to the basics of ceramics and processes: raw materials, powders synthesis, shaping and sintering. It discusses traditional ceramics as well as “technical” ceramics – both oxide and non-oxide – which have multiple developments.
The second part focuses on properties and applications, and discusses both structural and functional ceramics, including bioceramics. The fields of abrasion, cutting and tribology illustrate the importance of mechanical properties. It also deals with the questions/answers of a ceramicist regarding electronuclear technology. As chemistry is an essential discipline for ceramicists, the book shows, in particular, what soft chemistry can contribute as a result of sol-gel methods.

Preface xv

Part I: Ceramics: Materials and Processes 1

Chapter 1. Ceramic Compounds: Ceramic Materials 3
Philippe BOCH and Jean-François BAUMARD

1.1. Ceramics 3

1.1.1. Ceramics and terra cotta 3

1.1.2. Ceramics: physics, chemistry and materials engineering 4

1.1.3. Powders; sintering 6

1.1.4. A few definitions 8

1.2. Ceramic compounds 9

1.2.1. Chemistry of ceramics 9

1.2.2. Silicate ceramics and non-silicate ceramics 11

1.3. Silicate ceramics 12

1.4. Non-silicate ceramics 14

1.4.1. Structural ceramics 15

1.4.2. Functional ceramics 16

1.5. Ceramic structures and microstructures 18

1.5.1. Ceramic structures 18

1.5.2. Polymorphism: crystals and glasses 23

1.5.3. Ceramic microstructures 25

1.6. Specificity of ceramics 26

1.7. Bibliography 27

Chapter 2. History of Ceramics 29
Anne BOUQUILLON

2.1. Ceramics and clays 29

2.2. The first ceramics: sporadic occurrences as early as the end of the Paleolithic 30

2.3. The Neolithic era: the true beginning 31

2.3.1. Forming and firing 34

2.3.2. Decorations 35

2.4. Chinese stoneware and porcelains: millenniums ahead 43

2.4.1. Stoneware 44

2.4.2. Porcelains 45

2.5. In the quest for porcelains in the East and in the West 46

2.5.1. Siliceous pastes and glass frit pastes 47

2.5.2. Faience fine 48

2.5.3. The first veritable porcelains in Europe 49

2.6. Conclusion: the beginnings of industrialization 50

2.7. Bibliography 50

Chapter 3. Sintering and Microstructure of Ceramics 55
Philippe BOCH and Anne LERICHE

3.1. Sintering and microstructure of ceramics 55

3.2. Thermodynamics and kinetics: experimental aspects of sintering 56

3.2.1. Thermodynamics of sintering 56

3.2.2. Matter transport 58

3.2.3. Experimental aspects of sintering 58

3.3. Interface effects 61

3.4. Matter transport 65

3.4.1. Viscous flow of vitreous phases 66

3.4.2. Atomic diffusion in crystallized phases 67

3.4.3. Grain size distribution: scale effects 68

3.5. Solid phase sintering 70

3.5.1. The three stages of sintering 70

3.5.2. Grain growth 72

3.5.3. Competition between consolidation and grain growth 73

3.5.4. Normal grain growth 74

3.5.5. Abnormal grain growth 77

3.6. Sintering with liquid phase: vitrification 78

3.6.1. Parameters of the liquid phase 78

3.6.2. The stages in liquid phase sintering 80

3.7. Sintering additives: sintering maps 82

3.8. Pressure sintering and hot isostatic pressing 85

3.8.1. Applying a pressure during sintering 85

3.8.2. Pressure sintering 86

3.8.3. Hot isostatic pressingn (HIP) 88

3.8.4. Densification/conformity of shapes in HIP 90

3.9. Bibliography 92

Chapter 4. Silicate Ceramics 95
Jean-Pierre BONNET and Jean-Marie GAILLARD

4.1. Introduction 95

4.2. General information 96

4.3. The main raw materials 98

4.3.1. Introduction 98

4.3.2. Clays 98

4.3.3. Kaolinite 99

4.3.4. Feldspars 101

4.3.5. Silica 102

4.4. Enamel and decorations 103

4.4.1. Nature of enamel 103

4.4.2. Enamel/shard combination 104

4.4.3. Optical properties of enamel 104

4.4.4. Decorations 105

4.5. The products 105

4.5.1. Classification 105

4.5.2. Terra cotta products 106

4.5.3. Earthenwares 108

4.5.4. Stonewares 110

4.5.5. Porcelains 114

4.5.6. Vitreous china 117

4.6. Evolution of processes: the example of crockery 118

4.6.1. Introduction 118

4.6.2. The case of crockery 118

4.7. Conclusion 119

4.8. Bibliography 120

Chapter 5. Ceramic Forming Processes 123
Thierry CHARTIER

5.1. Introduction 123

5.2. Ceramic powders 125

5.2.1. Chemical characteristics 125

5.2.2. Physical properties 126

5.2.3. Particle packing 128

5.2.4. Influence of powders on the rheology of mixtures 131

5.2.5. Modifications in the characteristics of a powder 132

5.3. Ceramic particle suspensions 133

5.3.1. Introduction 133

5.3.2. Surface charge of oxides in water 133

5.3.3. Oxide/solution interface 135

5.3.4. The zeta potential () 136

5.3.5. Measurement of the zeta potential () 137

5.3.6. Electrostatic stabilization 138

5.3.7. Steric and electrosteric stabilizations 141

5.3.8. Rheology of ceramic systems 142

5.4. Casting 147

5.4.1. Slip casting 147

5.4.2. Pressure casting 152

5.4.3. Tape casting 153

5.4.4. Consolidation of concentrated suspensions 158

5.5. Pressing 159

5.5.1. Introduction 159

5.5.2. Granulation 160

5.5.3. Uniaxial pressing 164

5.5.4. Isostatic pressing 168

5.5.5. Semi-isostatic pressing 168

5.5.6. Roller compressing 169

5.6. Extrusion-injection molding 170

5.6.1. Introduction 170

5.6.2. The choice of components 171

5.6.3. Mixing 172

5.6.4. Shaping the mixture 176

5.6.5. Common flaws 182

5.6.6. Other plastic shaping techniques of traditional ceramics 183

5.7. Extraction of organic shaping additives 184

5.7.1. Introduction 184

5.7.2. Thermal debinding 184

5.7.3. Other debinding techniques 187

5.8. Deposition techniques 191

5.8.1. Vacuum deposition [RIC 94] 191

5.8.2. Thermal spray deposition [FAU 00] 193

5.9. Bibliography 194

Chapter 6. Alumina, Mullite and Spinel, Zirconia 199
Philippe BOCH and Thierry CHARTIER

6.1. Alumina, silica and mullite, magnesia and spinel, zirconia 199

6.2. Alumina 200

6.2.1. Alpha alumina 200

6.2.2. Alumina and its numerous varieties: the Bayer process 202

6.3. Alumina ceramics 205

6.3.1. Structural applications of alumina 205

6.3.2. Functional applications of alumina 209

6.4. Sintering of dense alumina 211

6.5. Point defects and diffusion in alumina 213

6.6. Al2O3-SiO2 system mullite 213

6.7. Al2O3-MgO system: magnesia and spinel 216

6.7.1. Magnesia 216

6.7.2. Spinel 217

6.8. Zirconia 219

6.8.1. Polymorphism of zirconia 219

6.8.2. Ceramic steel? 220

6.8.3. Transformation toughening 222

6.8.4. ZrO2 based materials: treatments and microstructures 225

6.9. Other oxides 227

6.10. Bibliography 228

Chapter 7. Non-oxide Ceramics 231
Paul GOURSAT and Sylvie FOUCAUD

7.1. Introduction 231

7.2. Synthesis of non-oxides 232

7.2.1. Powders 232

7.2.2. Fibers 235

7.2.3. Monocrystals 238

7.2.4. Depositions-coatings 239

7.3. Sintering and microstructure 243

7.3.1. Silicon nitride 244

7.3.2. Aluminum nitride 246

7.3.3. Silicon carbide 246

7.3.4. Boron carbide 247

7.4. Chemical stability and behavior at high temperature 248

7.4.1. Oxygen oxidation of Si3N4 and SiC 249

7.4.2. Water vapor oxidation 252

7.4.3. Corrosion by molten salts 252

7.5. Properties and applications 253

7.6. Bibliography 259

Part II. Properties and Applications of Ceramics 261

Chapter 8. Mechanical Properties of Ceramics 263
Tanguy ROUXEL

8.1. Brittleness and ductility 264

8.1.1. Brittle behavior 264

8.1.2. The R-curve effect 271

8.1.3. Statistical approach to fracture 275

8.1.4. Brittle/ductile transition 277

8.1.5. Experimental techniques 279

8.2. Friction, wear and abrasion 283

8.2.1. Friction and wear 283

8.2.2. Abrasion 286

8.3. Deformation 287

8.3.1. Elasticity 287

8.3.2. Irreversible deformation (by heat) 297

8.4. Damage and in-service behavior 306

8.4.1. Elastic behavior and slow growth of flaws 307

8.4.2. Viscoplastic behavior and creep damage 310

8.4.3. Thermal shocks 313

8.5. Conclusion 318

8.6. Acknowledgements 318

8.7. Bibliography 318

Chapter 9. Materials for Cutting, Drilling and Tribology 325
Henri PASTOR

9.1. Introduction 325

9.2. Materials for cutting 326

9.2.1. Machining and properties of tools 326

9.2.2. Processing of materials 327

9.2.3. Material properties 329

9.2.4. High speed steels 329

9.2.5. Sintered hard metals 333

9.2.6. Cermets 336

9.2.7. Ceramics 337

9.2.8. Superhard materials 339

9.2.9. Conclusion on cutting materials 340

9.3. Materials for drilling (petroleum, natural gas), mining, buildings and public works 340

9.3.1. Sintered hard metals 340

9.3.2. Diamonds and PCD 344

9.4. Materials for tools and components resisting wear, fatigue and corrosion 346

9.4.1. Cold working tools 347

9.4.2. Hot working tools 347

9.4.3. Components 348

9.5. Conclusion 349

9.6. Bibliography 355

Chapter 10. Refractory Materials 357
Jacques POIRIER

10.1. Introduction 357

10.2. Characteristics and service properties of refractory materials 358

10.2.1. Definition of a refractory product 358

10.2.2. Role and function of refractory products 359

10.2.3 Classification of refractory products 360

10.2.4. Design and components of electrofused refractory products 361

10.2.5. Design and components of “cohesive particles” refractory products 363

10.2.6. Manufacturing principles 372

10.2.7. Service properties of refractory products 374

10.3. Wear and degradation factors 375

10.3.1. Thermochemical behavior of refractories 376

10.3.2. Thermomechanical behavior of refractories 381

10.4. Conclusion 386

10.5. Bibliography 386

Chapter 11. Ceramics for Electronics 389
Pierre ABÉLARD

11.1. Conductors and insulators 389

11.1.1. Insulators 391

11.1.2. Semi-conductors 392

11.1.3. Metal conductors 401

11.1.4. Transition metal oxides 402

11.1.5. Localization or delocalization? 404

11.1.6. Contribution of ions to conductivity 407

11.2. Dielectrics 414

11.2.1. Basic concepts 414

11.2.2. Ferroelectric materials 423

11.2.3. Relaxors 431

11.3. Magnetic materials 433

11.3.1. Paramagnetism 434

11.3.2. Antiferromagnetism 435

11.3.3. Ferrimagnetism 435

11.4. Electronic properties of surfaces and interfaces in semi-conductor ceramic materials 439

11.4.1. Surface 440

11.4.2. Metal semi-conductor interface 444

11.4.3. Polycrystalline materials 445

11.5. Influence of microstructure on electrical properties 447

11.5.1. Modeling of apparent conductivity 447

11.5.2. Composite materials 453

11.5.3. Complex impedance measurements: a technique for studying heterogenous systems 457

11.6. Ceramic components in electronics 459

11.6.1. Substrates, interconnection circuits and hybrid circuits 459

11.6.2. Capacitors 463

11.6.3. Electromechanical transducers 469

11.6.4. Resonators 473

11.6.5. Heating elements 475

11.6.6. Temperature sensors 475

11.6.7. Varistors 483

11.6.8. Ceramic magnets 485

11.6.9. Gas sensors and fuel batteries 487

11.7. Bibliography 490

Chapter 12. Bioceramics 493
Christèle COMBES and Christian REY

12.1. Introduction and history 493

12.2. Biomedical ceramics and their field of use 494

12.2.1. Usage properties of biomedical ceramics 494

12.2.2. Multipurpose ceramics 494

12.2.3. Ceramics for specific uses 497

12.3. Biological properties 503

12.3.1. Ceramic-tissue interactions 503

12.3.2. Cell-ceramic interactions 505

12.3.3. Biodegradation 508

12.3.4. Standards and biological tests 512

12.4. Processing of bioceramics 513

12.4.1. Massive ceramics 513

12.4.2. Thin coatings 514

12.4.3. Cements 515

12.4.4. Composites 516

12.5. Bibliography 517

Chapter 13. Nuclear Ceramics: Fuels, Absorbers and Inert Matrices 523
Clément LEMAIGNAN and Jean-Claude NIEPCE

13.1. Introduction 523

13.2. Fuel element 524

13.2.1. Fuel fabrication (UO2 or MOX) 525

13.2.2. Behavior of nuclear fuel under irradiation 528

13.3. Absorptive ceramics 534

13.3.1. Fabrication of ceramic absorber materials 536

13.3.2. Behavior of B4C in reactor 536

13.4. “Inert matrix” ceramics of the fuel and other nuclear ceramics 537

13.5. Bibliography 538

Chapter 14. Sol-gel Methods and Optical Properties 539
Jean-Pierre BOILOT and Jacques MUGNIER

14.1. Physico-chemistry of gels 539

14.1.1. Sols and silica gels 539

14.1.2. Growth and structure of sol-gel polymers 542

14.1.3. From gel to materials 548

14.2. Sol-gel process for multi-elemental oxides 550

14.2.1. Metallo-organic molecular precursors 550

14.2.2. Different methods of synthesis 552

14.2.3. Crystallization problem 553

14.3. Optical properties of sol-gel thin layers 554

14.3.1. Sol-gel thin layers 554

14.3.2. Planar optical waveguides 555

14.3.3. Development and method of analysis of planar sol-gel wave guides 556

14.3.4. Other applications of thin sol-gel coatings 559

14.4. Conclusions and future prospects 560

14.5. Bibliography 561

List of Authors 565

Index 567