Condensed Matter Physics, 2nd Edition
Condensed Matter Physics, 2nd Edition
ISBN: 9781118304488
Dec 2014
984 pages
$140.00
Description
Now updated—the leading singlevolume introduction to solid state and soft condensed matter physicsThis Second Edition of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. Comprehensive and authoritative, it consolidates the critical advances of the past fifty years, bringing together an exciting collection of new and classic topics, dozens of new figures, and new experimental data.
This updated edition offers a thorough treatment of such basic topics as band theory, transport theory, and semiconductor physics, as well as more modern areas such as quasicrystals, dynamics of phase separation, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids. In addition to careful study of electron dynamics, electronics, and superconductivity, there is much material drawn from soft matter physics, including liquid crystals, polymers, and fluid dynamics.

Provides frequent comparison of theory and experiment, both when they agree and when problems are still unsolved

Incorporates many new images from experiments

Provides endofchapter problems including computational exercises

Includes more than fifty data tables and a detailed fortypage index

Offers a solutions manual for instructors
Featuring 370 figures and more than 1,000 recent and historically significant references, this volume serves as a valuable resource for graduate and undergraduate students in physics, physics professionals, engineers, applied mathematicians, materials scientists, and researchers in other fields who want to learn about the quantum and atomic underpinnings of materials science from a modern point of view.
Related Resources
Instructor
Contact your Rep for all inquiries
References.
I ATOMIC STRUCTURE.
1 The Idea of Crystals.
1.1 Introduction.
1.2 TwoDimensional Lattices.
1.3 Symmetries.
2 ThreeDimensional Lattices.
2.1 Introduction.
2.2 Monatomic Lattices.
2.3 Compounds.
2.4 Classification of Lattices by Symmetry.
2.5 Symmetries of Lattices with Bases.
2.6 Some Macroscopic Implications of Microscopic Symmetries . . . .
3 Scattering and Structures.
3.1 Introduction.
3.2 Theory of Scattering from Crystals.
3.3 Experimental Methods.
3.4 Further Features of Scattering Experiments.
3.5 Correlation Functions.
4 Surfaces and Interfaces.
4.1 Introduction.
4.2 Geometry of Interfaces.
4.3 Experimental Observation and Creation of Surfaces.
5 Beyond Crystals.
5.1 Introduction.
5.2 Diffusion and Random Variables.
5.3 Alloys.
5.4 Simulations.
5.5 Liquids.
5.6 Glasses.
5.7 Liquid Crystals.
5.8 Polymers.
5.9 Colloids and DiffusingWave Scattering.
5.10 Quasicrystals.
5.11 Fullerenes and nanotubes.
II ELECTRONIC STRUCTURE.
6 The Free Fermi Gas and Single Electron Model.
6.1 Introduction.
6.2 Starting Hamiltonian.
6.3 Densities of States.
6.4 Statistical Mechanics of Noninteracting Electrons.
6.5 Sommerfeld Expansion.
7 NonInteracting Electrons in a Periodic Potential.
7.1 Introduction.
7.2 Translational Symmetry—Bloch's Theorem.
7.3 Rotational Symmetry—Group Representations.
8 Nearly Free and Tightly Bound Electrons.
8.1 Introduction.
8.2 Nearly Free Electrons.
8.3 Brillouin Zones.
8.4 Tightly Bound Electrons.
9 ElectronElectron Interactions.
9.1 Introduction.
9.2 Hartree and HartreeFock Equations.
9.3 Density Functional Theory.
9.4 Quantum Monte Carlo.
9.5 KohnSham Equations.
10 Realistic Calculations in Solids.
10.1 Introduction.
10.2 Numerical Methods.
10.3 Definition of Metals, Insulators, and Semiconductors.
10.4 Brief Survey of the Periodic Table.
III MECHANICAL PROPERTIES.
11 Cohesion of Solids.
11.1 Introduction.
11.2 Noble Gases.
11.3 Ionic Crystals.
11.4 Metals.
11.5 Band Structure Energy.
11.6 HydrogenBonded Solids.
11.7 Cohesive Energy from Band Calculations.
11.8 Classical Potentials.
12 Elasticity.
12.1 Introduction.
12.2 Nonlinear Elasticity.
12.3 Linear Elasticity.
12.4 Other Constitutive Laws.
13 Phonons.
13.1 Introduction.
13.2 Vibrations of a Classical Lattice.
13.3 Vibrations of a QuantumMechanical Lattice.
13.4 Inelastic Scattering from Phonons.
13.5 The Mössbauer Effect.
14 Dislocations and Cracks.
14.1 Introduction.
14.2 Dislocations.
14.3 TwoDimensional Dislocations and Hexatic Phases.
14.4 Cracks.
15 Fluid Mechanics.
15.1 Introduction.
15.2 Newtonian Fluids.
15.3 Polymeric Solutions.
15.4 Plasticity.
15.5 Superfluida ^{4}He.
IV ELECTRON TRANSPORT.
16 Dynamics of Bloch Electrons.
16.1 Introduction.
16.2 Semiclassical Electron Dynamics.
16.3 Noninteracting Electrons in an Electric Field.
16.4 Semiclassical Equations from Wave Packets.
16.5 Quantizing Semiclassical Dynamics.
17 Transport Phenomena and Fermi Liquid Theory.
17.1 Introduction.
17.2 Boltzmann Equation.
17.3 Transport Symmetries.
17.4 Thermoelectric Phenomena.
17.5 Fermi Liquid Theory.
18 Microscopic Theories of Conduction.
18.1 Introduction.
18.2 Weak Scattering Theory of Conductivity.
18.3 MetalInsulator Transitions in Disordered Solids.
18.4 Compensated Impurity Scattering and Green's Functions.
18.5 Localization.
18.6 Luttinger Liquids.
19 Electronics.
19.1 Introduction.
19.2 Metal Interfaces.
19.3 Semiconductors.
19.4 Diodes and Transistors.
19.5 Inversion Layers.
V OPTICAL PROPERTIES.
20 Phenomenological Theory.
20.1 Introduction.
20.2 Maxwell's Equations.
20.3 KramersKronig Relations.
20.4 The KuboGreenwood Formula.
21 Optical Properties of Semiconductors.
21.1 Introduction.
21.2 Cyclotron Resonance.
21.3 Semiconductor Band Gaps.
21.4 Excitons.
21.5 Optoelectronics.
22 Optical Properties of Insulators.
22.1 Introduction.
22.2 Polarization.
22.3 Optical Modes in Ionic Crystals.
22.4 Point Defects and Color Centers.
23 Optical Properties of Metals and Inelastic Scattering.
23.1 Introduction.
23.2 Metals at Low Frequencies.
23.3 Plasmons.
23.4 Interband Transitions.
23.5 Brillouin and Raman Scattering.
23.6 Photoemission.
VI MAGNETISM.
24 Classical Theories of Magnetism and Ordering.
24.1 Introduction.
24.2 Three Views of Magnetism.
24.3 Magnetic Dipole Moments.
24.4 Mean Field Theory and the Ising Model.
24.5 Other OrderDisorder Transitions.
24.6 Critical Phenomena.
25 Magnetism of Ions and Electrons.
25.1 Introduction.
25.2 Atomic Magnetism.
25.3 Magnetism of the FreeElectron Gas.
25.4 Tightly Bound Electrons in Magnetic Fields.
25.5 Quantum Hall Effect.
26 Quantum Mechanics of Interacting Magnetic Moments.
26.1 Introduction.
26.2 Origin of Ferromagnetism.
26.3 Heisenberg Model.
26.4 Ferromagnetism in Transition Metals.
26.5 Spintronics.
26.6 Kondo Effect.
26.7 Hubbard Model.
27 Superconductivity.
27.1 Introduction.
27.2 Phenomenology of Superconductivity.
27.3 Microscopic Theory of Superconductivity.
APPENDICES.
A Lattice Sums and Fourier Transforms.
A.1 OneDimensional Sum.
A.2 Area Under Peaks.
A.3 ThreeDimensional Sum.
A.4 Discrete Case.
A.5 Convolution.
A.6 Using the Fast Fourier Transform.
B Variational Techniques.
B.1 Functionals and Functional Derivatives.
B.2 TimeIndependent Schrödinger Equation.
B.3 TimeDependent Schrödinger Equation.
B.4 Method of Steepest Descent.
C Second Quantization.
C.1 Rules.
C.2 Derivations.
Index.
 This Second Edition presents an updated review of the whole field of condensed matter physics.
 It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.
""In this text intended for a oneyear graduate course, Marder (physics, U. of Texas, Austin) comments in the preface that this second edition incorporates the many thousands of updates and corrections suggested by readers of the first edition published in 1999, and he even gives credit to several individuals who found the most errors. He also points out that ""the entire discipline of condensed matter is roughly ten percent older than when the first edition was written, so adding some new topics seemed appropriate."" These new topics  chosen because of increasing recognition of their importance  include graphene and nanotubes, Berry phases, Luttinger liquids, diffusion, dynamic light scattering, and spin torques. The text also gives more leisurely attention to the topics of primary interest to most students: electron and phonon bond structures."" (Reference and Research Book News, February 2011)
 Brings together an exciting collection of heretofore disjointed new topics from the last three decades.
 Provides a thorough treatment of classic topics, including band theory,
transport theory, and semiconductor physics.  Includes over 300 figures, incorporating many neverseenbefore images from experiments.
 Clarifies subject matter for reader via frequent comparison of theory and experiment, both when they agree and when problems are still unsolved.
 Offers more than 50 data tables and a detailed index.
 Comes with endofchapter problems, including computational exercises
and a solutions manual for instructors.  Combines over 1000 references, both recent and historically significant.