Skip to main content

EPR Spectroscopy: Fundamentals and Methods



EPR Spectroscopy: Fundamentals and Methods

Daniella Goldfarb (Editor), Stefan Stoll (Editor)

ISBN: 978-1-119-16298-8 March 2018 648 Pages


This unique, self-contained resource is the first volume on electron paramagnetic resonance (EPR) spectroscopy in the eMagRes Handbook series. The 27 chapters cover the theoretical principles, the common experimental techniques, and many important application areas of modern EPR spectroscopy. EPR Spectroscopy: Fundamentals and Methods is presented in four major parts: A: Fundamental Theory, B: Basic Techniques and Instrumentation, C: High-Resolution Pulse Techniques, and D: Special Techniques.

The first part of the book gives the reader an introduction to basic continuous-wave (CW) EPR and an overview of the different magnetic interactions that can be determined by EPR spectroscopy, their associated theoretical description, and their information content. The second provides the basics of the various EPR techniques, including pulse EPR, and EPR imaging, along with the associated instrumentation. Parts C and D builds on parts A and B and offer introductory accounts of a wide range of modern advanced EPR techniques, with examples of applications. The last two parts presents most of the new advances that do not appear in most of the classical EPR textbooks that focus on CW EPR.

EPR Spectroscopy: Fundamentals and Methods contains, in concise form, all the material needed to understand state-of-the-art EPR spectroscopy at the graduate school/research level, whilst the editors have ensured that it presents the topic at a level accessible to newcomers to the field and others who want to know its range of application and how to apply it.

Contributors xi

Series Preface xv

Preface xvii

Part A: Fundamental Theory 1

1 Continuous-Wave EPR 3
Art van der Est

2 EPR Interactions – g-Anisotropy 17
Peter Gast and Edgar J.J. Groenen

3 EPR Interactions – Zero-field Splittings 29
Joshua Telser

4 EPR Interactions – Coupled Spins 63
Eric J.L. McInnes and David Collison

5 EPR Interactions – Hyperfine Couplings 81
Marina Bennati

6 EPR Interactions – Nuclear Quadrupole Couplings 95
Stefan Stoll and Daniella Goldfarb

7 Quantum Chemistry and EPR Parameters 115
Frank Neese

8 Spin Dynamics 143
Akiva Feintuch and Shimon Vega

9 Relaxation Mechanisms 175
Sandra S. Eaton and Gareth R. Eaton

Part B: Basic Techniques and Instrumentation 193

10 Transient EPR 195
Stefan Weber

11 Pulse EPR 215
Stefan Stoll

12 EPR Instrumentation 235
Edward Reijerse and Anton Savitsky

13 EPR Imaging 261
Boris Epel and Howard J. Halpern

14 EPR Spectroscopy of Nitroxide Spin Probes 277
Enrica Bordignon

Part C: High-Resolution Pulse Techniques 303

15 FT-EPR 305
Michael K. Bowman, Hanjiao Chen, and Alexander G. Maryasov

16 Hyperfine Spectroscopy – ENDOR 331
Jeffrey R. Harmer

17 Hyperfine Spectroscopy – ELDOR-detected NMR 359
Daniella Goldfarb

18 Hyperfine Spectroscopy – ESEEM 377
Sabine Van Doorslaer

19 Dipolar Spectroscopy – Double-resonance Methods 401
Gunnar Jeschke

20 Dipolar Spectroscopy – Single-resonance Methods 425
Peter P. Borbat and Jack H. Freed

21 Shaped Pulses in EPR 463
Philipp E. Spindler, Philipp Schöps, Alice M. Bowen, Burkhard Endeward, and Thomas F. Prisner

Part D: Special Techniques 483

22 Pulse Techniques for Quantum Information Processing 485
Gary Wolfowicz and John J.L. Morton

23 Rapid-scan EPR 503
Gareth R. Eaton and Sandra S. Eaton

24 EPR Microscopy 521
Aharon Blank

25 Optically Detected Magnetic Resonance (ODMR) 537
Etienne Goovaerts

26 Electrically Detected Magnetic Resonance (EDMR) Spectroscopy 559
Christoph Boehme and Hans Malissa

27 Very-high-frequency EPR 581
Alexander Schnegg

Index 603