Skip to main content

Electrical Energy Storage in Transportation Systems

Electrical Energy Storage in Transportation Systems

Benoît Robyns, Christophe Saudemont, Daniel Hissel, Xavier Roboam, Bruno Sareni, Julien Pouget

ISBN: 978-1-119-34776-7

Aug 2016, Wiley-ISTE

348 pages

$116.99

Description

This book deals with the management and valuation of energy storage in electric power grids, highlighting the interest of storage systems in grid applications and developing management methodologies based on artificial intelligence tools. The authors highlight the importance of storing electrical energy, in the context of sustainable development, in "smart cities" and "smart transportation", and discuss multiple services that storing electrical energy can bring.

Methodological tools are provided to build an energy management system storage following a generic approach. These tools are based on causal formalisms, artificial intelligence and explicit optimization techniques and are presented throughout the book in connection with concrete case studies.

Foreword  ix

Introduction  xi

Chapter 1. Issues in Electrical Energy Storage for Transport Systems 1

1.1. Storage requirements for transport systems  1

1.2. Difficulties of storing electrical energy  3

1.3. The electrical power supply of transport systems  6

1.4. Storage management 8

1.4.1. Specifications 11

1.4.2. Supervisor structure 11

1.4.3. Functional graphs 11

1.4.4. Membership functions  12

1.4.5. Functional graphs 14

1.4.6. Rules  15

1.4.7. Indicators  15

1.4.8. Optimization of supervisor parameters  16

1.4.9. Type-2 fuzzy logic  17

1.4.10. Methodologies for the development of energy management in a storage system 17

Chapter 2. Local DC Grid with Energy Exchange for Applications in Aviation 19

2.1. Introduction 19

2.2. Onboard grid  22

2.3. Local DC grid 23

2.4. Supervisor design methodology 26

2.5. Specifications 27

2.5.1. Objectives 27

2.5.2. Constraints 27

2.5.3. Means of action  27

2.6. Supervisor structure  28

2.6.1. Input values  28

2.6.2. Output values 28

2.7. Selection of design tools 29

2.8. Identification of different operating states: the functional graph 31

2.8.1. General functional graph  31

2.8.2. Functional subgraphs 33

2.9. Tools 41

2.10. Membership functions  41

2.11. Operational graph  45

2.12. Fuzzy rules  53

2.13. Experimental validation 57

2.13.1. Supervisor implementation  57

2.13.2. Experimental configuration  62

2.13.3. Results and analyses  63

2.14. Fuzzy supervisor optimization 72

2.14.1. Supervisor optimization methodology based on fuzzy rules 72

2.14.2. Application at levels N1 and N2 78

2.15. Conclusion  92

Chapter 3. Electric and Hybrid Vehicles 95

3.1. Introduction 95

3.2. Storage technologies in hybrids and EVs 99

3.3. Development of EVs and interaction with electric power grids  100

3.3.1. Issues in the development of EVs 100

3.3.2. Charge of EVs 101

3.3.3. Issues in the electric power grid integration 102

3.4. EV charging supervision 103

3.4.1. Introduction  103

3.4.2. EV charging models 104

3.4.3. Electric power distribution grid  108

3.4.4. Supervision  112

3.4.5. Results 122

3.5. The reversible charge of EVs  125

3.5.1. Introduction  125

3.5.2. Vehicle-to-grid and contribution of the reversible charge to the electric power grids 125

3.5.3. Vehicle-to-home and contribution of the reversible charge to buildings 127

3.6. Configurations and operating principle of HV  128

3.6.1. Hybridization levels 128

3.6.2. Configurations of power trains 129

3.7. Energy management in a hybrid vehicle  131

3.7.1. Introduction  131

3.7.2. Fuzzy logic for energy management  132

3.7.3. Type-2 fuzzy logic  132

3.7.4. Application to the energy management of an EV  139

3.8. Conclusion 146

Chapter 4. Railway System: Diesel–Electric Hybrid Power Train 147

4.1. Introduction 147

4.2. Design of an autonomous hybrid locomotive 151

4.2.1. Introduction to the issues in design and energy management within the framework of the PLATHEE project  151

4.2.2. Frequency management strategy  157

4.2.3. Importance and processing of railway assignments  163

4.2.4. Sequential design: from dimensioning to analysis 171

4.2.5 Implementation of the PLATHEE demonstrator 200

4.3. Conclusion 216

4.4. Exercise: definition of the energy requirements in the railway sector and application of storage to electric traction 217

4.4.1. Kinematic study of a train  218

4.4.2. Study on energy profile of a train 227

4.4.3. Basic design and comparison of energy storage system technologies for railway applications 240

4.5. Appendices 249

4.5.1. Technical characteristics of storage sources and components carried on board the PLATHEE 249

Chapter 5. Railway System: Hybrid Railway Power Substation 255

5.1. Introduction 255

5.2. Hybrid railway power substations 260

5.2.1. Issues in the railway electrification system  260

5.2.2. The HRPS solution  265

5.2.3. State-of-the-art of the HRPS  267

5.3. Energy management in an HRPS  279

5.3.1. Methodology 279

5.3.2. Technical specifications 280

5.3.3. Supervisor structure 283

5.3.4. Determination of the functional graphs of the short-term supervisor  284

5.3.5. Membership functions  289

5.3.6. Determination of functional graphs  291

5.3.7. Fuzzy rules 295

5.3.8. Performance indicators 295

5.3.9. Modeling and results 298

5.3.10. Energy management optimization  302

5.4. Experimentation of an HRPS and sensitivity analysis  309

5.5. Railway smart grid perspective 316

5.6. Conclusion 318

5.7. Acknowledgments 318

Bibliography  319

Index 329