Skip to main content

Emerging Actuator Technologies: A Micromechatronic Approach



Emerging Actuator Technologies: A Micromechatronic Approach

José L. Pons

ISBN: 978-0-470-09198-2 September 2005 304 Pages

Download Product Flyer

Download Product Flyer

Download Product Flyer is to download PDF in new tab. This is a dummy description. Download Product Flyer is to download PDF in new tab. This is a dummy description. Download Product Flyer is to download PDF in new tab. This is a dummy description. Download Product Flyer is to download PDF in new tab. This is a dummy description.


Actuators are devices that convert electrical energy into mechanical work, traditionally used in electrical, pneumatic and hydraulic systems. As the demand for actuator technologies grows in biomedical, prosthetic and orthotic applications, there is an increasing need for complex and sophisticated products that perform efficiently also when scaled to micro and nano domains.

Providing a comprehensive overview of actuators for novel applications, this excellent book:
* Presents a mechatronic approach to the design, control and integration of a range of technologies covering piezoelectric actuators, shape memory actuators, electro-active polymers, magnetostrictive actuators and electro- and magnetorheological actuators.
* Examines the characteristics and performance of emerging actuators upon scaling to micro and nano domains.
* Assesses the relative merits of each actuator technology and outlines prospective application fields.

Offering a detailed analysis on current advances in the field, this publication will appeal to practising electrical and electronics engineers developing novel actuator systems. Mechanical and automation engineers, computer scientists and researchers will also find this a useful resource.


List of Figures.

List of Tables.

1 Actuators in motion control systems: mechatronics.

1.1 What is an actuator?

1.2 Transducing materials as a basis for actuator design.

1.3 The role of the actuator in a control system: sensing, processing and acting.

1.4 What is mechatronics? Principles and biomimesis.

1.5 Concomitant actuation and sensing: smart structures.

1.6 Figures of merit of actuator technologies.

1.7 A classification of actuator technologies.

1.8 Emerging versus traditional actuator technologies.

1.9 Scope of the book: emerging actuators.

1.10 Other actuator technologies.

2 Piezoelectric actuators.

2.1 Piezoelectricity and piezoelectric materials.

2.2 Constitutive equations of piezoelectric materials.

2.3 Resonant piezoelectric actuators.

2.4 Nonresonant piezoelectric actuators.7

2.5 Control aspects of piezoelectric motors.

2.6 Figures of merit of piezoelectric actuators.

2.7 Applications.

3 Shape Memory Actuators (SMAs).

3.1 Shape memory alloys.

3.2 Design of shape memory actuators.

3.3 Control of SMAs.

3.4 Figures of merit of shape memory actuators.

3.5 Applications.

4 Electroactive polymer actuators (EAPs).

4.1 Principles.

4.2 Design issues.

4.3 Control of EAPs.

4.4 Figures of merit of EAPs.

4.5 Applications.

5 Magnetostrictive actuators (MSs).

5.1 Principles of magnetostriction.

5.2 Magnetostrictive materials: giant magnetostriction.

5.3 Design of magnetostrictive actuators.

5.4 Control of magnetostrictive actuators: vibration absorption.

5.5 Figures of merit of MS actuators.

5.6 Applications.

6 Electro- and magnetorheological actuators (ERFs, MRFs).

6.1 Active rheology: transducing materials.

6.2 Mechatronic design concepts.

6.3 Control of ERF and MRF.

6.4 Figures of merit of ER and MR devices.

6.5 Applications.

7 Summary, conclusions and outlook.

7.1 Brief summary.

7.2 Comparative position of emerging actuators.

7.3 Research trends and application trends.