Skip to main content

Encyclopedia of Polymer Blends, Volume 3: Structure

Encyclopedia of Polymer Blends, Volume 3: Structure

Avraam I. Isayev (Editor)

ISBN: 978-3-527-65398-0

Jun 2016

528 pages

$152.99

Description

A complete and timely overview of the topic, this Encyclopedia imparts knowledge of fundamental principles and their applications for academicians, scientists and researchers, while informing engineers, industrialists and entrepreneurs of the current state of the technology and its utilization.

  • The most comprehensive source on polymer blends available on the market
  • Offers a complete and timely overview of the topic
  • Each article presents up to date research & development on a topic and its basic principles and applications, integrates case studies, laboratory and pilot plant experiments, and gives due reference to published and patented literature
  • Equips academics, scientists and researchers with knowledge of fundamentals principles and their applications, and informs the engineers, industrialists and entrepreneurs about the state of the art technology and its applications

Preface XIII

List of Contributors XVII

1 Glass-Transition Phenomena in Polymer Blends 1
Ioannis M. Kalogeras

1.1 Introduction 1

1.2 Phenomenology and Theories of the Glass Transition 4

1.2.1 Thermodynamic Phase Transitions 4

1.2.2 Structural, Kinetic, and Thermodynamic Aspects 7

1.2.3 Relaxation Dynamics and Fragility 11

1.2.3.1 Relaxations in Glass-Forming Materials 12

1.2.3.2 The Concept of Fragility 17

1.2.4 Theoretical Approaches to the Glass Transition 20

1.2.4.1 General Overview 20

1.2.4.2 Energy Landscapes and Many-Molecule Relaxation Dynamics 21

1.2.4.3 Approaches with an Underlying Avoided Dynamical Transition 24

1.2.4.4 Models Showing a Thermodynamic (or Static) Critical Point 26

1.2.4.5 Percolative Phenomena in Glass Formation 34

1.3 Manipulating the Glass Transition 36

1.3.1 Effects of Chemical Structure 37

1.3.2 Externally Controlled Processes or Treatments 40

1.3.2.1 Pressure Effects 40

1.3.2.2 Crystallization Effects 42

1.3.2.3 Plasticizer Effects 43

1.3.2.4 Filler Effects 44

1.3.2.5 Cross-linker Effects 45

1.3.2.6 Geometric Confinement Effects 47

1.4 Experimental Means of Determination 50

1.4.1 Calorimetric Techniques 52

1.4.2 Thermomechanical Analysis (TMA) 57

1.4.3 Dynamic Mechanical Analysis (DMA) 60

1.4.4 Dielectric Analysis (DEA) 63

1.5 Blend Morphology and Glass Transitions 66

1.5.1 Miscibility and Phase Boundaries in Polymer Blends 67

1.5.2 State of Dispersion and the Glass Transition 71

1.6 Analyzing Glass Transitions in Single-Phase Systems 78

1.6.1 Shape Characteristics and Strength of the Transition 78

1.6.2 Description and Interpretation of Tg versus Composition Behaviors 81

1.6.2.1 Specific Volumes or Flexible Bonds Additivity Models 81

1.6.2.2 Additivity of Free Volumes 82

1.6.2.3 Predictions Based on Thermodynamic Considerations 85

1.6.2.4 Empirical Concentration Power Tg (w) Equations and Systems’ Complexity 89

1.6.2.5 Dynamically Heterogeneous Miscible Blends 94

1.7 Case Studies 99

1.7.1 Miscibility Achievement via Chemical Modification 99

1.7.2 Microstructure of the Amorphous Phase in Semicrystalline Blends 108

1.7.3 Ternary Polymer Blends: Phase Behavior and Glass Transitions 111

1.8 Concluding Remarks 115

Abbreviations 117

Symbols 119

Greek Symbols 121

References 122

2 Crystallization and Melting Behavior in Polymer Blends 135
Saleh A. Jabarin, Kazem Majdzadeh-Ardakani, and Elizabeth A. Lofgren

2.1 Introduction 135

2.2 Miscibility of Polymer Blends 136

2.3 Miscible Blends 138

2.3.1 Crystalline/Amorphous Polymer Blends 139

2.3.2 Glass Transition and Melting Behavior 139

2.3.2.1 Melting Point Depression 140

2.3.3 Crystallization 142

2.3.4 Spherulite Growth Rate of the Crystallizable Component 144

2.3.5 Overall Crystallization Kinetics 147

2.3.5.1 Isothermal Kinetics 147

2.3.5.2 Nonisothermal Kinetics 150

2.3.6 Crystalline/Crystalline Polymer Blends 152

2.4 Immiscible Blends 158

2.4.1 Blends with an Amorphous Dispersed Phase in a Crystallizable Matrix 158

2.4.1.1 Nucleation of the Crystalline Phase 158

2.4.1.2 Spherulite Growth Rate of the Crystalline Phase 159

2.4.1.3 Overall Crystallization Kinetics 161

2.4.1.4 Glass Transition of the Amorphous Component and Melting Behavior of the Crystalline Matrix in Immiscible Polymer Blends 163

2.4.2 Blends with a Crystallizable Dispersed Phase in an Amorphous Matrix 164

2.4.2.1 Fractionated Crystallization 164

2.4.2.2 Determination of the Number Density of Heterogeneities 165

2.4.3 Effect of the Fillers on the Crystallization of Immiscible Polymer Blends 166

2.5 Compatibilized Polymer Blends 167

2.5.1 Addition of Blocks or Graft Copolymers 167

2.5.2 Reactive Compatibilization 168

2.5.2.1 Reactive Compatibilization in Bio-based Polymer Blends 169

2.5.3 Crystallization of Compatibilized Blends 170

2.5.3.1 Differences Between the Crystallization Behaviors of Polymer Blends and Copolymers 171

2.5.4 The role of Transesterification on the Miscibility and Morphology of Polyester Blends 172

2.6 Summary and Conclusions 173

2.7 Nomenclature 175

2.7.1 Abbreviations 175

2.7.2 Notations 177

2.7.3 Symbols 177

2.7.3.1 Roman Letters 177

2.7.3.2 Greek Letters 179

References 179

3 Morphology and Structure of Crystalline/Crystalline Polymer Blends 191
Zhaobin Qiu and Shouke Yan

3.1 Introduction 192

3.2 Systems with Small Melting Point Difference 193

3.2.1 Preliminary Study on Morphology and Structure of PES/PEO Blends 193

3.2.2 Effect of Blend Composition on the Formation of Interpenetrating Spherulites of PES/PEO Blends 195

3.2.3 Effect of Crystallization Temperature on the Crystalline Morphologies of PES/PEO Blends 198

3.3 Systems with Large Melting Point Difference 201

3.3.1 Crystallization Behavior of the High-Tm Component in Miscible Polymer Blends 201

3.3.2 Crystallization Behavior of Low-Tm Component in Miscible Polymer Blends 209

3.3.3 Morphology and Structure of Blend Systems with Large Melting Point Difference 213

3.4 Concluding Remarks 225

Acknowledgment 226

References 226

4 Rubber–Plastic Blends: Structure–Property Relationship 229
Sudhin Datta

4.1 Introduction: Key Challenges 229

4.2 Rubber Toughening of Thermoplastics 233

4.2.1 Mechanism 233

4.2.2 Morphology 235

4.2.3 Failure Process 236

4.3 Models for Rubber Toughening of Plastics 240

4.3.1 Crazing Model 241

4.3.2 Interparticle Distance Model 242

4.3.3 Percolation Models 243

4.4 Characterization of Rubber–Plastic Blends 243

4.4.1 Glass Transition 243

4.4.2 Dynamic Mechanical Characterization 244

4.4.3 Calorimetric Methods 245

4.4.4 Dielectric Characterization 246

4.4.5 Morphology/Microscopy 246

4.4.6 Optical Microscopy 247

4.4.7 Transmission Electron Microscopy 248

4.4.8 Scanning Electron Microscopy 249

4.4.9 Atomic Force Microscopy 250

4.4.10 Scanning Tunneling Microscopy 250

4.4.11 X-Ray Microscopy 251

4.4.12 Scattering Methods: Light, X-Ray, and Neutron 251

4.4.13 X-Ray Scattering 251

4.4.14 Neutron Scattering 252

4.4.15 Neutron Reflectivity 253

4.4.16 Neutron Spin Echo Spectroscopy 253

4.4.17 Nuclear Magnetic Resonance 253

4.4.18 Spectroscopic Methods 254

4.4.19 Infrared Spectroscopy 254

4.4.20 UV–Visible Spectroscopy 254

4.4.21 Raman Spectroscopy 254

4.4.22 Fluorescence Spectroscopy: Nonradiative Energy Transfer and Excimer Fluorescence 255

4.4.23 X-Ray Photoelectron Spectroscopy and Secondary Ion Mass Spectroscopy 255

4.4.24 Vapor Sorption and Solvent Probe Techniques 255

4.4.25 Characterization of Interfacial Properties 256

4.5 Experimental Rubber–Plastic Blends 257

4.5.1 Early Work 257

4.5.2 Blends of Polyvinyl Chloride 257

4.5.3 Blends of Polystyrene and Styrene Copolymers 260

4.5.4 Blends of Polyamides 265

4.5.5 Blends of Isotactic Polypropylene 269

4.5.5.1 With Ethylene–Propylene Copolymer Rubber 270

4.5.5.2 With Ethylene–Isotactic Propylene Copolymers 272

4.5.5.3 With Higher α-Olefin Rubber 272

4.5.5.4 With Ethylene–Butene-1 Copolymer 273

4.5.5.5 With Ethylene–Hexene-1 Copolymer 274

4.5.5.6 With Ethylene–Octene-1 Copolymer 275

4.5.6 Tensile Properties 275

4.5.7 Structure in Injection-Molded Specimens 276

4.5.8 Impact Performance 277

4.5.9 Poly(butene-1) as Semicrystalline Rubber 278

4.5.10 Styrene Block Polymer Rubber 278

4.6 Thermoplastic Vulcanizates 279

4.6.1 Nonpolar Rubber with Nonpolar Thermoplastic 282

4.6.1.1 EPDM Elastomer with iPP Thermoplastic 282

4.6.1.2 Natural Rubber Elastomer with PE Thermoplastic 282

4.6.1.3 Natural Rubber Elastomer with Polypropylene Thermoplastic 283

4.6.1.4 Butyl Rubber Elastomer with Polypropylene Thermoplastic 283

4.6.2 Polar Rubber with Nonpolar Plastic 283

4.6.2.1 NBR Elastomer with iPP Thermoplastic 283

4.6.2.2 Acrylate Rubber with iPP Thermoplastic 283

4.6.3 Nonpolar Rubber with Polar Thermoplastic 284

4.6.3.1 EPDM Rubber with PA6 Thermoplastic 284

4.6.3.2 EPDM Rubber with PBT Thermoplastic 284

4.6.3.3 EPDM Rubber with iPP + PA6 Thermoplastic 284

4.6.4 Polar Rubber with Polar Thermoplastic 284

4.6.4.1 Acrylate Elastomer with Polyester Thermoplastic 284

4.7 Blends Made during Polymerization 285

4.7.1 Gum Elastomers 285

4.7.1.1 Diene Rubbers 285

4.7.1.2 Ethylene-Based Elastomers 286

4.7.1.3 Ethylene Copolymers 287

4.7.1.4 Ionomers 287

4.7.2 Emulsion Rubbers 287

4.7.3 Core–Shell Graft Polymers 287

4.7.4 Block Polymers 288

4.7.4.1 Butadiene–Styrene Block Copolymers 288

4.8 Conclusions 288

References 289

5 Morphology of Rubber/Rubber Blends 299
Avraam I. Isayev and Tian Liang

5.1 Introduction 299

5.2 Characterization Techniques for Rubber Blends 300

5.2.1 Optical Microscopy 300

5.2.2 Transmission Electron Microscopy 300

5.2.3 Scanning Electron Microscopy 301

5.2.4 Atomic Force Microscopy 301

5.2.5 Dynamic Testing 301

5.2.6 Thermal Analysis 302

5.3 Effect of Material Parameters and Processing on Structure and Morphology of Rubber Blends 303

5.4 Distribution of Fillers and Cure Balance in Rubber Blends 308

5.4.1 Distribution of Fillers in Rubber Blends 308

5.4.2 Migration of Curatives in Rubber Blends 310

5.5 Morphology and Properties of Different Rubber Blends 311

5.5.1 Blends Containing NR 311

5.5.2 Blends Containing BR 318

5.5.3 Blends Containing SBR 319

5.5.4 Blends Containing EPDM 322

5.5.5 Blends Containing Butyl Rubber 323

5.5.6 Blends Containing NBR 324

5.5.7 Blends Containing CR 325

5.5.8 Blends Containing Silicone Rubber 326

5.5.9 Blends Containing Hydrogenated Nitrile Butadiene Rubber (HNBR) 327

5.6 Conclusions 328

References 329

6 Phase Morphology and Properties of Ternary Polymer Blends 335
V.N. Kuleznev and Yu. P. Miroshnikov

6.1 Introduction 335

6.2 Miscibility of Polymers in Ternary Polymer Blends 336

6.3 Formation of Phase Morphology 345

6.3.1 Prediction of Phase Morphologies of Polymer Blends 346

6.3.1.1 Binary Blends 347

6.3.2 Ternary Polymer Blends 348

6.3.3 Encapsulated Morphologies: Influence of Different Factors 358

6.3.3.1 Blend Composition 358

6.3.3.2 Kinetic Factors 363

6.3.3.3 Morphological Types 369

6.3.3.4 Multiple Percolated Structures 372

6.3.3.5 Partial Wetting Morphology 375

6.3.4 Ternary Blends with Separated Dispersed Phases 379

6.3.4.1 Effects of Interaction between Dispersed Phases 379

6.3.4.2 Ternary Systems with One Solid Phase – Proof of the Mechanism of Phase Interaction 384

6.4 Properties of Ternary Polymer Blends 389

6.5 Conclusions and Future Development 393

References 395

7 Morphology and Structure of Polymer Blends Containing Nanofillers 401
Hossein Nazockdast

7.1 Introduction 401

7.2 Type of Nanofiller Used in Polymer Nanocomposite 402

7.2.1 Structure and Characteristic of Layered Silicate 402

7.2.1.1 Surface Modification of Layered Silicates 403

7.2.1.2 The Structure of Polymer-Silicate Nanocomposites 405

7.2.2 Structure and Characteristic of Carbon Nanotube 405

7.2.2.1 Surface Modification of Carbon Nanotube 407

7.2.3 Structure and Characteristics of Silica Nanoparticles 408

7.3 Nanostructural Characterization 409

7.3.1 X-Ray Diffraction 409

7.3.2 Transition Electron Microscopy (TEM) 410

7.3.3 Differential Scanning Calorimetry 411

7.3.4 The Linear Rheological Measurements 412

7.4 Partially Miscible Polymer Blends Containing Nanoparticle 414

7.4.1 The Effect of Nanoparticles on Phase Separation of Partially Miscible Polymer Blends 415

7.4.2 The Effect of Silica Nanoparticles on Phase Separation of PMMA/Polyvinyl Acetate 417

7.4.3 Effect of Nanosilica on Phase-separation Behavior of PMMA/SAN Blends 418

7.4.4 Effect of Addition of Nanoparticles on Phase-separation Behavior of PS/PVME 428

7.5 Immiscible Polymer Blends Containing Nanoparticle 433

7.5.1 Introduction 433

7.5.2 Parameters Determining Localization of Nanoparticles 433

7.5.2.1 Thermodynamic Parameters (Wetting Parameters) 434

7.5.2.2 Kinetic Parameters (Dynamic Processes) 437

7.5.2.3 Effect of Feeding Sequence 437

7.5.2.4 Effect of Viscosity 441

7.5.3 Rheology of Immiscible Polymer Blends Containing Nanoparticle 446

7.5.3.1 Polymer Blends Containing Nanosilica 447

7.5.3.2 Polymer Blends Containing Nanoclay 450

7.5.3.3 Polymer Blends Containing Carbon Nanotubes 459

7.5.4 The Role of Nanoparticles on the Morphology Evolution of Nanofilled Polymer Blends 462

7.5.4.1 Nanoparticle Migration (Dynamic and Transfer of Nanoparticles) 462

7.5.4.2 The Compatibilizing Effect of Nanoparticles 464

References 473

Index 483