Skip to main content

Energy Geostructures: Innovation in Underground Engineering

Energy Geostructures: Innovation in Underground Engineering

Lyesse Laloui (Editor), Alice Di Donna (Editor)

ISBN: 978-1-118-76176-2

Sep 2013, Wiley-ISTE

320 pages

$116.99

Description

Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures.
The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge of these structures. It details the procedures that are currently being applied in the regions where geostructures are being implemented. The book is divided into three parts, each of which is divided into chapters, and is written by the brightest engineers and researchers in the field. After an introduction to the technology as well as to the main effects induced by temperature variation on the geostructures, Part 1 is devoted to the physical modeling of energy geostructures, including in situ investigations, centrifuge testing and small-scale experiments. The second part includes numerical simulation results of energy piles, tunnels and bridge foundations, while also considering the implementation of such structures in different climatic areas. The final part concerns practical engineering aspects, from the delivery of energy geostructures through the development of design tools for their geotechnical dimensioning. The book concludes with a real case study.

Contents

Part 1. Physical Modeling of Energy Piles at Different Scales
1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures, Alice Di Donna and Lyesse Laloui.
2. Full-scale In Situ Testing of Energy Piles, Thomas Mimouni and Lyesse Laloui.
3. Observed Response of Energy Geostructures, Peter Bourne-Webb.
4. Behavior of Heat-Exchanger Piles from Physical Modeling, Anh Minh Tang, Jean-Michel Pereira, Ghazi Hassen and Neda Yavari.
5. Centrifuge Modeling of Energy Foundations, John S. McCartney.
Part 2. Numerical Modeling of Energy Geostructures
6. Alternative Uses of Heat-Exchanger Geostructures, Fabrice Dupray, Thomas Mimouni and Lyesse Laloui.
7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading, Maria E. Suryatriyastuti, Hussein Mroueh , Sébastien Burlon and Julien Habert.
8. Energy Geostructures in Unsaturated Soils, John S. McCartney, Charles J.R. Coccia , Nahed Alsherif and Melissa A. Stewart.
9. Energy Geostructures in Cooling-Dominated Climates, Ghassan Anis Akrouch, Marcelo Sanchez and Jean-Louis Briaud.
10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil, Maria E. Suryatriyastuti, Hussein Mroueh and Sébastien Burlon.
11. Ground-Source Bridge Deck De-icing Systems Using Energy Foundations, C. Guney Olgun and G. Allen Bowers.
Part 3. Engineering Practice
12. Delivery of Energy Geostructures, Peter Bourne-Webb with contributions from Tony Amis,
Jean-Baptiste Bernard, Wolf Friedemann, Nico Von Der Hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin.
13. Thermo-Pile: A Numerical Tool for the Design of Energy Piles, Thomas Mimouni and Lyesse Laloui.
14. A Case Study: The Dock Midfield of Zurich Airport, Daniel Pahud.

About the Authors

Lyesse Laloui is Chair Professor, Head of the Soil Mechanics, Geoengineering and CO2 storage Laboratory and Director of Civil Engineering at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.
Alice Di Donna is a researcher at the Laboratory of Soil Mechanics at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.

Preface xiii

Lyesse LALOUI and Alice DI DONNA

PART 1. PHYSICAL MODELING OF ENERGY PILES AT DIFFERENT SCALES  1

Chapter 1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures 3
Alice DI DONNA and Lyesse LALOUI

1.1. Introduction 4

1.2. Thermomechanical behavior of soils 5

1.2.1. Thermomechanical behavior of clays 6

1.3. Constitutive modeling of the thermomechanical behavior of soils 12

1.3.1. The ACMEG-T model 12

1.4. Acknowledgments 18

1.5. Bibliography 18

Chapter 2. Full-scale In Situ Testing of Energy Piles 23
Thomas MIMOUNI and Lyesse LALOUI

2.1. Monitoring the thermomechanical response of energy piles 23

2.1.1. Measuring strains and temperature along the piles 23

2.1.2. Measuring pile tip compression 27

2.1.3. Monitoring the behavior of the soil 27

2.2. Description of the two full-scale in situ experimental sites 28

2.2.1. Single full-scale test pile 28

2.2.2. Full-scale test on a group of energy piles 31

2.2.3. Testing procedure 32

2.3. Thermomechanical behavior of energy piles 36

2.3.1. General methodology 36

2.3.2. Thermomechanical response of the single test pile 38

2.3.3. Thermomechanical response of a group of energy piles 40

2.4. Conclusions 42

2.5. Bibliography 42

Chapter 3. Observed Response of Energy Geostructures 45
Peter BOURNE-WEBB

3.1. Overview of published observational data sources 45

3.2. Thermal storage and harvesting 46

3.2.1. Overview 46

3.2.2. Energy injection/extraction rates 47

3.2.3. Thermal fields 52

3.3. Thermomechanical effects 58

3.3.1. Overview 58

3.3.2. Structural effects 58

3.3.3. Soil-structure interactions 62

3.4. Summary 65

3.5. Acknowledgments 66

3.6. Bibliography 67

Chapter 4. Behavior of Heat-Exchanger Piles from Physical Modeling 79
Anh Minh TANG, Jean-Michel PEREIRA, Ghazi HASSEN and Neda YAVARI

4.1. Introduction 79

4.2. Physical modeling of pile foundations 80

4.2.1. Boundary conditions 80

4.2.2. Mechanical loading system 81

4.2.3. Monitoring 81

4.2.4. Pile’s behavior 82

4.3. Physical modeling of a heat-exchanger pile 83

4.3.1. Experimental setup 83

4.3.2. Mechanical behavior of a pile under thermomechanical loading 85

4.3.3. Heat transfer 89

4.3.4. Soil–pile interface 90

4.3.5. Lessons learned from physical modeling of a heat-exchanger pile 91

4.4. Conclusions 94

4.5. Acknowledgments 94

4.6. Bibliography 94

Chapter 5. Centrifuge Modeling of Energy Foundations  99
John S. MCCARTNEY

5.1. Introduction 99

5.2. Background on thermomechanical soil–structure interaction 100

5.3. Centrifuge modeling concepts 101

5.4. Centrifuge modeling components 101

5.4.1. Centrifuge model fabrication and characterization 101

5.4.2. Experimental setup 103

5.5. Centrifuge modeling tests for semi-floating foundations 105

5.5.1. Soil details 105

5.5.2. Foundation A: isothermal load tests to failure 106

5.5.3. Foundation B: thermomechanical stress–strain modeling 110

5.6. Conclusions 113

5.7. Acknowledgments 113

5.8. Bibliography 114

PART 2. NUMERICAL MODELING OF ENERGY GEOSTRUCTURES  117

Chapter 6. Alternative Uses of Heat-Exchanger Geostructures 119
Fabrice DUPRAY, Thomas MIMOUNI and Lyesse LALOUI

6.1. Small, dispersed foundations for deck de-icing 120

6.1.1. Heat demand and specificities of small foundations 121

6.1.2. Modeling of the pile 122

6.1.3. Results and analysis 126

6.2. Heat-exchanger anchors 131

6.2.1. Technical aspects and possible users 131

6.2.2. Method of investigation 132

6.2.3. Optimizing the heat production 134

6.2.4. Mechanical implications of heat production 135

6.3. Conclusions 136

6.4. Acknowledgments 137

6.5. Bibliography 137

Chapter 7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading 139
Maria E. SURYATRIYASTUTI, Hussein MROUEH, Sébastien BURLON and Julien HABERT

7.1. Introduction 139

7.2. Bearing capacity of a pile under an additional thermal load 140

7.3. A constitutive law of soil–pile interface under cyclic loading: the Modjoin law 143

7.4. Numerical analysis of a thermoactive pile under thermal cyclic loading 145

7.4.1. Reaction to the upper structure 147

7.4.2. Normal force in the pile 148

7.4.3. Mobilized shaft frictions at the soil–pile interface 148

7.5. Recommendation for real-scale thermoactive piles 150

7.5.1. Effect of different loading rates for the applied mechanical load 150

7.5.2. Effect of thermoactive piles on piled raft foundation 150

7.6. Conclusions 153

7.7. Acknowledgments 153

7.8. Bibliography 154

Chapter 8. Energy Geostructures in Unsaturated Soils  157
John S. MCCARTNEY, Charles J.R COCCIA, Nahed ALSHERIF and Melissa A. STEWART

8.1. Introduction 157

8.2. Thermally induced water flow 159

8.3. Thermal volume change in unsaturated soils 160

8.4. Thermal effects on soil strength and stiffness 161

8.5. Thermal effects on hydraulic properties of unsaturated soils 163

8.6. Thermal effects on soil–geosynthetic interaction 164

8.7. Conclusions 167

8.8. Acknowledgments 167

8.9. Bibliography 167

Chapter 9. Energy Geostructures in Cooling-Dominated Climates  175
Ghassan Anis AKROUCH, Marcelo SANCHEZ and Jean-Louis BRIAUD

9.1. Introduction 175

9.2. Climatic factors and their effects on soil conditions and properties 175

9.3. Saturated and unsaturated soil thermal properties and heat transfer 177

9.4. Impact of soil conditions on energy geostructures performance 179

9.4.1. Laboratory experimental design 179

9.4.2. Numerical modeling 180

9.4.3. Laboratory test and numerical results 183

9.4.4. Modeling the full pile 186

9.5. Full scale tests on energy piles  187

9.6. Conclusions 189

9.7. Acknowledgments 190

9.8. Bibliography 190

Chapter 10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil  193
Maria E. SURYATRIYASTUTI, Hussein MROUEH and Sébastien BURLON

10.1. Introduction 193

10.2. Heat transfer phenomenon 194

10.2.1. Soil properties 195

10.2.2. Energy conservation in the transient regime 196

10.3. Numerical modeling of thermal diffusion in a thermoactive pile 197

10.3.1. A two-dimensional model – internal diffusion in the thermoactive pile 198

10.3.2. A three-dimensional model – external diffusion to the surrounding soil 201

10.4. Impact of the long-term thermal operation 202

10.4.1. Groundwater flow effect on the heat diffusion 202

10.4.2. Mechanical durability under thermal cyclic stress 205

10.5. Conclusions 205

10.6. Acknowledgments 207

10.7. Bibliography 208

Chapter 11. Ground-Source Bridge Deck De-icing Systems Using Energy Foundations 211
C. Guney OLGUN and G. Allen BOWERS

11.1. Introduction 211

11.2. Ground-source heating of bridge decks 213

11.3. Thermal processes and evaluation of energy demand for ground-source de-icing systems 214

11.4. Numerical modeling and analysis results 216

11.5. Summary and conclusions 223

11.6. Acknowledgments 223

11.7. Bibliography 224

PART 3. ENGINEERING PRACTICE 227

Chapter 12. Delivery of Energy Geostructures 229
Peter BOURNE-WEBB with contributions from Tony AMIS, Jean-Baptiste BERNARD, Wolf FRIEDEMANN, Nico VON DER HUDE, Norbert PRALLE, Veli Matti UOTINEN and Bernhard WIDERIN

12.1. Introduction 229

12.2. Planning and design 230

12.2.1. Coordination and communication 230

12.2.2. Design management 231

12.2.3. System design redundancy 231

12.2.4. Awareness and skills training 234

12.3. Construction 236

12.3.1. Process quality control 236

12.3.2. Installation details 237

12.4. System integration and commissioning 260

12.5. Summary 261

12.6. Acknowledgments 262

12.7. Bibliography 262

Chapter 13. Thermo-Pile: A Numerical Tool for the Design of Energy Piles 265
Thomas MIMOUNI and Lyesse LALOUI

13.1. Basic assumptions 265

13.2. Mathematical formulation and numerical implementation 266

13.2.1. The load-transfer method 266

13.2.2. Displacements induced by the mechanical load 268

13.2.3. Displacements induced by the thermal load 269

13.3. Validation of the method 270

13.4. Piled-beams with energy piles 271

13.4.1. General method 272

13.4.2. Determination of the integration constants 275

13.4.3. Example of simulation 276

13.5. Conclusions 277

13.6. Acknowledgments 278

13.7. Bibliography 278

Chapter 14. A Case Study: The Dock Midfield of Zurich Airport 281
Daniel PAHUD

14.1. The Dock Midfield 281

14.2. Design process of the energy pile system 282

14.2.1. Pile system concept 282

14.2.2. Problems to solve 283

14.2.3. First calculations 284

14.2.4. Second calculations 285

14.2.5. Third calculations 287

14.2.6. Final simulations using the TRNSYS program 288

14.3. The PILESIM program 288

14.4. System design and measurement points 289

14.5. Measured thermal performances of the system 291

14.6. System optimization and integration 293

14.7. Conclusions 294

14.8. Acknowledgments 295

14.9. Bibliography 295

List of Authors 297

Index 299