Skip to main content

Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization

Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization

Stephan Russenschuck

ISBN: 978-3-527-63546-7

Jan 2011

778 pages

Description

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning.

Included topics:

Technological challenges for the Large Hadron Collider at CERN
Algebraic structures and vector fields
Classical vector analysis
Foundations of analytical field computation
Fields and Potentials of line currents
Harmonic fields
The conceptual design of iron- and coil-dominated magnets
Solenoids
Complex analysis methods for magnet design
Elementary beam optics and magnet polarities
Numerical field calculation using finite- and boundary-elements
Mesh generation
Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents
Quench simulation and magnet protection
Mathematical optimization techniques using genetic and deterministic algorithms


Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.
Magnets for Accelerators
Algebraic Structures and Vector Fields
Classical Vector Analysis
Maxwell's Equations and Boundary Value Problems
Fields and Potentials of Line Currents
Field Harmonics
Iron-Dominated Magnets
Coil-Dominated Magnets
Complex Analysis Methods for Magnet Design
Field Diffusion
Elementary Beam Optics and Field Requirements
Reference Frames and Magnet Polarities
Finite-Element Formulations
Discretization
Coupling of Boundary and Finite Elements
Superconductor Magnetization
Interstrand Coupling Currents
Quench Simulation
Differential Geometry Applied to Coil-End Design
Mathematical Optimization Techniques
Material Property Data for Quench Simulations

“The volume under review is an excellent guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.”  (Zentralblatt MATH, 2012)