Skip to main content

Green Materials for Electronics

Green Materials for Electronics

Mihai Irimia-Vladu (Editor), Eric D. Glowacki (Editor), Niyazi S. Sariciftci (Editor), Siegfried Bauer (Editor)

ISBN: 978-3-527-69295-8

Sep 2017

206 pages

Description

Combining the materials science, technological, and device aspects of organic bioelectronics based on green materials, this is the first overview of the emerging concepts involving fabrication techniques for sustainable electronics with low energy and material consumption.
With contributions from top-notch editors and authors, in one focus, the book covers a collection of natural materials suited for electronics applications such as paper, silk, melanin, DNA and nucleobases, resins, gums, saccharides, cellulose, gelatine and peptides. In another thrust, the book focuses on device fabrication based on these materials, including processing aspects, and applications such as sensors, signal transducers, transient, implantable and digestible electronics.
With its interdisciplinary approach this text will appeal to the chemistry, physics, materials science, and engineering communities.
Foreword and Introduction
PART I. NATURAL MATERIALS FOR ELECTRONICS APPLICATIONS
Paper
Silk
Melanin
DNA and Nucleobases
Natural Dielectrics
H-bonded Semiconductors
Genetically Engineered Peptides for Electronics
PART II. BIOCOMPATIBLE MATERIALS AND SUSTAINABLE PROCESSES FOR GREEN ELECTRONICS
Bioelectronic Devices for Sensing and Actuation
Organic Materials as Transducers of Neural Signals
Low Impedance Biomimetic Conductive Polymer and Bioactive Hydrogel Coatings for Microelectrodes and Biomedical Biosensors
Materials for Neural Interfaces
Biocompatible Circuits for Human-Machine Interfacing
Protonic Devices
Biocompatible Materials for Transient Electronics
Materials and Devices for Electronic Skin
Materials and Devices for Imperceptible Electronics
Energy Requirement for High-performance Electronics Fabrication
Bioelectronics: Quo Vadis?