Skip to main content

Impedance Source Power Electronic Converters

Impedance Source Power Electronic Converters

Yushan Liu, Haitham Abu-Rub, Baoming Ge, Dr. Frede Blaabjerg, Omar Ellabban, Poh Chiang Loh

ISBN: 978-1-119-03710-1

Aug 2016, Wiley-IEEE Press

424 pages

$104.99

Description

Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters.

Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters.

Key features:

  • Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies.
  • Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods.
  • Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems.
  • Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications.
  • Provides an overview of existing challenges, solutions and future trends.
  • Supported by calculation examples, simulation models and results. 

Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.

Preface xii

Acknowledgment xiv

Bios xv

1 Background and Current Status 1

1.1 General Introduction to Electrical Power Generation 1

1.1.1 Energy Systems 1

1.1.2 Existing Power Converter Topologies 5

1.2 Z‐Source Converter as Single‐Stage Power Conversion System 10

1.3 Background and Advantages Compared to Existing Technology 11

1.4 Classification and Current Status 13

1.5 Future Trends 15

1.6 Contents Overview 15

Acknowledgment 16

References 16

2 VoltageFed ZSource/QuasiZSource Inverters 20

2.1 Topologies of Voltage‐Fed Z‐Source/Quasi‐Z‐Source Inverters 20

2.2 Modeling of Voltage‐Fed qZSI 23

2.2.1 Steady‐State Model 23

2.2.2 Dynamic Model 25

2.3 Simulation Results 30

2.3.1 Simulation of qZSI Modeling 30

2.3.2 Circuit Simulation Results of Control System 31

2.4 Conclusion 33

References 33

3 CurrentFed ZSource Inverter 35

3.1 Introduction 35

3.2 Topology Modification 37

3.3 Operational Principles 39

3.3.1 Current‐Fed Z‐Source Inverter 39

3.3.2 Current‐Fed Quasi‐Z‐Source Inverter 41

3.4 Modulation 44

3.5 Modeling and Control 46

3.6 Passive Components Design Guidelines 47

3.7 Discontinuous Operation Modes 48

3.8 Current‐Fed Z‐Source Inverter/Current‐Fed Quasi‐Z‐Source

Inverter Applications 51

3.9 Summary 52

References 52

4 Modulation Methods and Comparison 54

4.1 Sinewave Pulse‐Width Modulations 54

4.1.1 Simple Boost Control 55

4.1.2 Maximum Boost Control 55

4.1.3 Maximum Constant Boost Control 56

4.2 Space Vector Modulations 57

4.2.1 Traditional SVM 57

4.2.2 SVMs for ZSI/qZSI 57

4.3 Pulse‐Width Amplitude Modulation 63

4.4 Comparison of All Modulation Methods 63

4.4.1 Performance Analysis 64

4.4.2 Simulation and Experimental Results 64

4.5 Conclusion 72

References 72

5 Control of ShootThrough Duty Cycle: An Overview 74

5.1 Summary of Closed‐Loop Control Methods 74

5.2 Single‐Loop Methods 75

5.3 Double‐Loop Methods 76

5.4 Conventional Regulators and Advanced Control Methods 76

References 77

6 ZSource Inverter: Topology Improvements Review 78

6.1 Introduction 78

6.2 Basic Topology Improvements 79

6.2.1 Bidirectional Power Flow 79

6.2.2 High‐Performance Operation 80

6.2.3 Low Inrush Current 80

6.2.4 Soft‐Switching 80

6.2.5 Neutral Point 82

6.2.6 Reduced Leakage Current 82

6.2.7 Joint Earthing 82

6.2.8 Continuous Input Current 82

6.2.9 Distributed Z‐Network 85

6.2.10 Embedded Source 85

6.3 Extended Boost Topologies 87

6.3.1 Switched Inductor Z‐Source Inverter 87

6.3.2 Tapped‐Inductor Z‐Source Inverter 93

6.3.3 Cascaded Quasi‐Z‐Source Inverter 94

6.3.4 Transformer‐Based Z‐Source Inverter 97

6.3.5 High Frequency Transformer Isolated Z‐Source Inverter 103

6.4 L‐Z‐Source Inverter 103

6.5 Changing the ZSI Topology Arrangement 105

6.6 Conclusion 109

References 109

7 Typical TransformerBased ZSource/QuasiZSource Inverters 113

7.1 Fundamentals of Trans‐ZSI 113

7.1.1 Configuration of Current‐Fed and Voltage‐Fed Trans‐ZSI 113

7.1.2 Operating Principle of Voltage‐Fed Trans‐ZSI 116

7.1.3 Steady‐State Model 117

7.1.4 Dynamic Model 119

7.1.5 Simulation Results 121

7.2 LCCT‐ZSI/qZSI 122

7.2.1 Configuration and Operation of LCCT‐ZSI 122

7.2.2 Configuration and Operation of LCCT‐qZSI 124

7.2.3 Simulation Results 126

7.3 Conclusion 127

Acknowledgment 127

References 127

8 ZSource/QuasiZSource ACDC Rectifiers 128

8.1 Topologies of Voltage‐Fed Z‐Source/Quasi‐Z‐Source Rectifiers 128

8.2 Operating Principle 129

8.3 Dynamic Modeling 130

8.3.1 DC‐Side Dynamic Model of qZSR 130

8.3.2 AC‐Side Dynamic Model of Rectifier Bridge 132

8.4 Simulation Results 134

8.5 Conclusion 137

References 137

9 ZSource DCDC Converters 138

9.1 Topologies 138

9.2 Comparison 140

9.3 Example Simulation Model and Results 141

References 147

10 ZSource Matrix Converter 148

10.1 Introduction 148

10.2 Z‐Source Indirect Matrix Converter (All‐Silicon Solution) 151

10.2.1 Different Topology Configurations 151

10.2.2 Operating Principle and Equivalent Circuits 153

10.2.3 Parameter Design of the QZS‐Network 156

10.2.4 QZSIMC (All‐Silicon Solution) Applications 157

10.3 Z‐Source Indirect Matrix Converter (Not All‐Silicon Solution) 158

10.3.1 Different Topology Configurations 158

10.3.2 Operating Principle and Equivalent Circuits 160

10.3.3 Parameter Design of the QZS Network 164

10.3.4 ZS/QZSIMC (Not All‐Silicon Solution) Applications 164

10.4 Z‐Source Direct Matrix Converter 167

10.4.1 Alternative Topology Configurations 167

10.4.2 Operating Principle and Equivalent Circuits 170

10.4.3 Shoot‐Through Boost Control Method 171

10.4.4 Applications of the QZSDMC 175

10.5 Summary 177

References 177

11 Energy Stored ZSource/QuasiZSource Inverters 179

11.1 Energy Stored Z‐Source/Quasi‐Z Source Inverters 179

11.1.1 Modeling of qZSI with Battery 180

11.1.2 Controller Design 182

11.2 Example Simulations 188

11.2.1 Case 1: SOCmin < SOC < SOCmax 188

11.2.2 Case 2: Avoidance of Battery Overcharging 190

11.3 Conclusion 192

References 193

12 ZSource Multilevel Inverters 194

12.1 Z‐Source NPC Inverter 194

12.1.1 Configuration 194

12.1.2 Operating Principles 195

12.1.3 Modulation Scheme 200

12.2 Z‐Source/Quasi‐Z‐Source Cascade Multilevel Inverter 206

12.2.1 Configuration 206

12.2.2 Operating Principles 208

12.2.3 Modulation Scheme 209

12.2.4 System‐Level Modeling and Control 213

12.2.5 Simulation Results 219

12.3 Conclusion 224

Acknowledgment 224

References 224

13 Design of ZSource and QuasiZSource Inverters 226

13.1 Z‐Source Network Parameters 226

13.1.1 Inductance and Capacitance of Three‐Phase qZSI 226

13.1.2 Inductance and Capacitance of Single‐Phase qZSI 227

13.2 Loss Calculation Method 233

13.2.1 H‐bridge Device Power Loss 233

13.2.2 qZS Diode Power Loss 236

13.2.3 qZS Inductor Power Loss 236

13.2.4 qZS Capacitor Power Loss 237

13.3 Voltage and Current Stress 237

13.4 Coupled Inductor Design 239

13.5 Efficiency, Cost, and Volume Comparison with Conventional Inverter 239

13.5.1 Efficiency Comparison 239

13.5.2 Cost and Volume Comparison 240

13.6 Conclusion 242

References 243

14 Applications in Photovoltaic Power Systems 244

14.1 Photovoltaic Power Characteristics 244

14.2 Typical Configurations of Single‐Phase and Three‐Phase Systems 245

14.3 Parameter Design Method 245

14.4 MPPT Control and System Control Methods 248

14.5 Examples Demonstration 249

14.5.1 Single‐Phase qZS PV System and Simulation Results 249

14.5.2 Three‐Phase qZS PV Power System and Simulation Results 249

14.5.3 1 MW/11 kV qZS CMI Based PV Power System and Simulation Results 250

14.6 Conclusion 253

References 255

15 Applications in Wind Power 256

15.1 Wind Power Characteristics 256

15.2 Typical Configurations 257

15.3 Parameter Design 257

15.4 MPPT Control and System Control Methods 259

15.5 Simulation Results of a qZS Wind Power System 261

15.6 Conclusion 264

References 265

16 ZSource Inverter for Motor Drives Application: A Review 266

16.1 Introduction 266

16.2 Z‐Source Inverter Feeding a Permanent Magnet Brushless DC Motor 269

16.3 Z‐Source Inverter Feeding a Switched Reluctance Motor 270

16.4 Z‐Source Inverter Feeding a Permanent Magnet Synchronous Motor 273

16.5 Z‐Source Inverter Feeding an Induction Motor 276

16.5.1 Scalar Control (V/F) Technique for ZSI‐IM Drive System 276

16.5.2 Field Oriented Control Technique for ZSI‐IM Drive System 279

16.5.3 Direct Torque Control (DTC) Technique for ZSI‐IM Drive System 279

16.5.4 Predictive Torque Control for ZSI‐IM Drive System 283

16.6 Multiphase Z‐Source Inverter Motor Drive System 283

16.7 Two‐Phase Motor Drive System with Z‐Source Inverter 286

16.8 Single‐Phase Induction Motor Drive System Using Z‐Source Inverter 286

16.9 Z‐Source Inverter for Vehicular Applications 286

16.10 Conclusion 289

References 290

17 Impedance Source MultiLeg Inverters 295

17.1 Impedance Source Four‐Leg Inverter 295

17.1.1 Introduction 295

17.1.2 Unbalanced Load Analysis Based on Fortescue Components 296

17.1.3 Effects of Unbalanced Load Condition 297

17.1.4 Inverter Topologies for Unbalanced Loads 300

17.1.5 Z‐Source Four‐Leg Inverter 302

17.1.6 Switching Schemes for Three‐Phase Four‐Leg Inverter 310

17.1.7 Buck/Boost Conversion Modes Analysis 316

17.2 Impedance Source Five‐Leg (Five‐Phase) Inverter 319

17.2.1 Five‐Phase VSI Model 319

17.2.2 Space Vector PWM for a Five‐Phase Standard VSI 322

17.2.3 Space Vector PWM for Five‐Phase qZSI 323

17.2.4 Discontinuous Space Vector PWM for Five‐Phase qZSI 324

17.3 Summary 326

References 326

18 Model Predictive Control of Impedance Source Inverter 329

18.1 Introduction 329

18.2 Overview of Model Predictive Control 330

18.3 Mathematical Model of the Z‐Source Inverters 331

18.3.1 Overview of Topologies 331

18.3.2 Three‐Phase Three‐Leg Inverter Model 333

18.3.3 Three‐Phase Four‐Leg Inverter Model 335

18.3.4 Multiphase Inverter Model 338

18.4 Model Predictive Control of the Z‐Source Three‐Phase Three‐Leg Inverter 342

18.5 Model Predictive Control of the Z‐Source Three‐Phase Four‐Leg Inverter 349

18.5.1 Discrete‐Time Model of the Output Current for Four‐Leg Inverter 349

18.5.2 Control Algorithm 350

18.6 Model Predictive Control of the Z‐Source Five‐Phase Inverter 350

18.6.1 Discrete‐Time Model of the Five‐Phase Load 352

18.6.2 Cost Function for the Load Current 353

18.6.3 Control Algorithm 353

18.7 Performance Investigation 353

18.8 Summary 359

References 359

19 Grid Integration of QuasiZ Source Based PV Multilevel Inverter 362

19.1 Introduction 362

19.2 Topology and Modeling 363

19.3 Grid Synchronization 364

19.4 Power Flow Control 365

19.4.1 Proportional Integral Controller 366

19.4.2 Model Predictive Control 372

19.5 Low Voltage Ride‐Through Capability 379

19.6 Islanding Protection 381

19.6.1 Active Frequency Drift (AFD) 383

19.6.2 Sandia Frequency Shift (SFS) 383

19.6.3 Slip‐Mode Frequency Shift (SMS) 383

19.6.4 Simulation Results 384

19.7 Conclusion 387

References 387

20 Future Trends 390

20.1 General Expectation 390

20.1.1 Volume and Size Reduction by Wide Band‐Gap Devices 390

20.1.2 Parameters Minimization for Single‐Phase qZS Inverter 391

20.1.3 Novel Control Methods 392

20.1.4 Future Applications 392

20.2 Illustration of Using Wide Band Gap Devices 393

20.2.1 Impact on Z‐Source Network 394

20.2.2 Analysis and Evaluation of SiC Device Based qZSI 395

20.3 Conclusion 398

References 398

Index 401

"Power engineers developing Z-source converters, and those who want to learn about this new topology, will find this book to be a very useful resource. It is very well written, clearly explains the technical details of the Z-source convert­er, and incorporates many circuit designs and applications." (IEEE Electrical Insulation magazine 04/05/2017)