Skip to main content

Lectures on Quantum Information

Lectures on Quantum Information

Dagmar Bruss (Editor), Gerd Leuchs (Editor)

ISBN: 978-3-527-61863-7

Feb 2008

634 pages


Quantum Information Processing is a young and rapidly growing field of research at the intersection of physics, mathematics, and computer science. Its ultimate goal is to harness quantum physics to conceive -- and ultimately build -- "quantum" computers that would dramatically overtake the capabilities of today's "classical" computers. One example of the power of a quantum computer is its ability to efficiently find the prime factors of a larger integer, thus shaking the supposedly secure foundations of standard encryption schemes.
This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. With its series of exercises, this is ideal reading for students and lecturers in physics and informatics, as well as experimental and theoretical physicists, and physicists in industry.
1. Classical Information Theory
- Classical Information Theory and Classical Error Correction (M. Grassl)
- Computational Complexity (S.Mertens)
2. Foundations of Quantum Information Theory
- Discrete Quantum States versus Continuous Variables (J. Eisert)
- Approximate Quantum Cloning (D. Bruss, C. Macchiavello)
- Channels and Maps (M. Keyl, R. Werner)
- Quantum Algorithms (J. Kempe)
- Quantum Error Correction (M. Grassl)
3. Theory of Entanglement
- The Seperability versus Eentanglement Problem (A. Sen (De), U. Sen, M. Lewenstein, A. Sanpera)
- Entanglement Theory with Continuous Vvariables (P. van Loock)
- Entanglement Measures (M. Plenio, S. Virmani)
- Purifiaction and Distillation (H.-J. Briegel, W. Dürr)
- Bound Entanglement (P. Horodecki)
- Multi-Particle Entanglement (J. Eisert, D. Gross)
4. Quantum Communication
- Teleportation (L. C. Davila Romero, N. Korolkova)
- Quantum Communication Experiments with Discrete Variables (H. Weinfurter)
- Continuous Variable Quantum Communication (U. L. Andersen, G. Leuchs)
5. Quantum Computing: Concepts
- Requirements for a Quantum Computer (A. Ekert, A. Kay)
- Probabilitistic Quantum Cumputation and Linear Optical Realization (N. Lütkenhaus)
- One-way Quantum Computation ( D. E. Browne, H.-J. Briegel)
- Holonomic Quantum Computing (A. C. M. Carollo, V. Vedral)
6. Quantum Computing: Implementations
- Quantum Computing with Cold Ions and Atoms: Theory (D. Jaksch, J. J. Garca-Ripoll, J. I. Cirac, P. Zoller)
- Quantum Computing with Cold Ions and Atoms: Experiments with Ion Traps (F. Schmidt-Kaler)
- Quantum Computing with Solid State Systems ( G. Burkart, D. Loss)
- Quantum Computing Implemented via Optimal Control: Theory and Application to Spin and Pseudo-Spin Systems (T. Schulte-Herbrüggen, A. K. Spörl, R. Marx, N. Khaneja, J. M. Myers, A. F. Fahmy, S. J. Glaser)
7. Transfer of Quantum Information between Different Types of Implementations
- Quantum Repeater (W. Dür, H.-J. Briegel, P. Zoller)
- Quantum Interface between Light and Atomic Ensembles (E. S. Polzik, J. Fiurasek)
- Cavity Quantum Electrodynamics: Quantum Information Processing with Atoms and Photons (J.-M. Raimond, G. Rempe)
- Quantum Electrodynamics of a Qubit (G. Alber, G. M. Nikolopoulos)
8. Towards Quantum Technology Applications
- Quantum Interferometry (O. Göckl, U. L. Andersen, G. Leuchs)
- Quantum Imaging (C. Fabre, N. Treps)