Skip to main content

Maschinelles Lernen mit Python und R für Dummies

Maschinelles Lernen mit Python und R für Dummies

John Paul Mueller, Luca Massaron, Simone Linke (Translator)

ISBN: 978-3-527-80901-1

Aug 2017

432 pages

$31.99

Über die Autoren 13

Einführung 25

Teil I: Einführung in das maschinelle Lernen 29

Kapitel 1: Künstliche Intelligenz in Fiktion und Realität 31

Kapitel 2: Lernen im Zeitalter von Big Data 43

Kapitel 3: Ein Ausblick auf die Zukunft 53

Teil II: Einrichtung Ihrer Programmierumgebung 63

Kapitel 4: Installation einer R-Distribution 65

Kapitel 5: Programmierung mit R und RStudio 83

Kapitel 6: Installation einer Python-Distribution 107

Kapitel 7: Programmierung mit Python und Anaconda 127

Kapitel 8: Weitere Softwareprogramme für maschinelles Lernen 151

Teil III: Mathematische Grundlagen                                 159

Kapitel 9: Mathematische Grundlagen des maschinellen Lernens  161

Kapitel 10: Fehlerfunktionen und ihre Minimierung 179

Kapitel 11: Validierung von maschinellem Lernen 191

Kapitel 12: Einfache Lerner 209

Teil IV: Aufbereitung und Verwendung von Daten

zum Lernen 225

Kapitel 13: Vorverarbeitung von Daten  227

Kapitel 14: Ausnutzung von Ähnlichkeiten in Daten 245

Kapitel 15: Einfache Anwendung von linearen Modellen 265

Kapitel 16: Komplexere Lernverfahren und neuronale Netze  287

Kapitel 17: Support Vector Machines und Kernel-Funktionen  303

Kapitel 18: Kombination von Lernalgorithmen in Ensembles 321

Teil V: Praktische Anwendung von maschinellem Lernen 337

Kapitel 19: Klassifikation von Bildern  339

Kapitel 20: Bewertung von Meinungen und Stimmungslagen 353

Kapitel 21: Produkt- und Filmempfehlungen 373

Teil VI: Der Top-Ten-Teil  387

Kapitel 22: Zehn wichtige Pakete für maschinelles Lernen 389

Kapitel 23: Zehn Methoden zur Verbesserung Ihrer maschinellen Lernmodelle 395

Stichwortverzeichnis 403