Skip to main content

Mathematical Models of Fluid Dynamics: Modelling, Theory, Basic Numerical Facts - An Introduction, 2nd, Updated Edition

Mathematical Models of Fluid Dynamics: Modelling, Theory, Basic Numerical Facts - An Introduction, 2nd, Updated Edition

Rainer Ansorge, Thomas Sonar

ISBN: 978-3-527-62797-4

Jul 2009

242 pages

$161.99

Description

Without sacrificing scientific strictness, this introduction to the field guides readers through mathematical modeling, the theoretical treatment of the underlying physical laws and the construction and effective use of numerical procedures to describe the behavior of the dynamics of physical flow.
The book is carefully divided into three main parts:
- The design of mathematical models of physical fluid flow;
- A theoretical treatment of the equations representing the model, as Navier-Stokes, Euler, and boundary layer equations, models of turbulence, in order to gain qualitative as well as quantitative insights into the processes of flow events;
- The construction and effective use of numerical procedures in order to find quantitative descriptions of concrete physical or technical fluid flow situations.
Both students and experts wanting to control or predict the behavior of fluid flows by theoretical and computational fluid dynamics will benefit from this combination of all relevant aspects in one handy volume.
1. Ideal Fluids
2. Weak Solutions of Conservation Laws
3. Entropy Conditions
4. The Riemann Problem
5. Real Fluids
6. Existence Proof for Entropy Solutions by Means of Discretization Procedures
7. Types of Discretization Principles
8. A Closer Look into Discrete Models
9. Discrete Models on Curvilinear Grids
10. Finite Volume Models
11. Simple Meshless Models
- a new section on physical flow of hot gases in tubes of finite length (tunnel fire);
- a new section on continuous convergence of relations, to which a few special numerical approaches used in the first edition can be subordinated;
- supplements on traffic flows, which in the first edition were used as a motivation for the necessity of the inclusion of weak solutions to flow-dynamical equations.
"The book is useful for students and experts, for mathematicians with interest on physical/technical problems, and for engineers in the field of fluid dynamics."

B. Platzer
ZAMM No. 9, 1 (2004)