Skip to main content

Membrane Materials for Gas and Separation: Synthesis and Application fo Silicon-containing Polymers

Membrane Materials for Gas and Separation: Synthesis and Application fo Silicon-containing Polymers

Yuri Yampolskii (Editor), E. FInkelshtein (Editor)

ISBN: 978-1-119-11273-0

Jan 2017

440 pages

$148.99

Description

Si containing polymers have been instrumental in the development of membrane gas separation practices since the early 1970s. Their function is to provide a selective barrier for different molecular species, where selection takes place either on the basis of size or on the basis of physical interactions or both.

  • Combines membrane science, organosilicon chemistry, polymer science, materials science, and physical chemistry

 

  • Only book to consider polymerization chemistry and synthesis of Si-containing polymers (both glassy and rubbery), and their role as membrane materials

 

  • Membrane operations present environmental benefits such as reduced waste, and recovered/recycled valuable raw materials that are currently lost to fuel or to flares

Contributors xi

Preface xv

1 Permeability of Polymers 1
Yuri Yampolskii

1.1 Introduction 1

1.2 Detailed mechanism of sorption and transport 3

1.2.1 Transition-state model 3

1.2.2 Free volume model 4

1.2.3 Sorption isotherms 5

1.3 Concentration dependence of permeability and diffusion coefficients 6

1.4 Effects of properties of gases and polymers on permeation parameters 10

Acknowledgement 13

References 13

2 Organosiloxanes (Silicones), Polyorganosiloxane Block Copolymers: Synthesis, Properties, and Gas Permeation Membranes Based on Them 17
Igor Raygorodsky, Victor Kopylov, and Alexander Kovyazin

2.1 Introduction 17

2.2 Synthesis and transformations of organosiloxanes 17

2.2.1 Polyorganosiloxanes with aminoalkyl groups at silicon 19

2.2.2 Organosilicon alcohols and phenols 21

2.3 Synthesis of polyorganosiloxane block copolymers 23

2.3.1 Polyester(ether)–polyorganosiloxane block copolymers 24

2.3.2 Synthesis of polyurethane–, polyurea–, polyamide–, polyimide– organosiloxane POBCs 25

2.4 Properties of polyorganosiloxane block copolymers 29

2.4.1 Phase state of polyblock organosiloxane copolymers 29

2.5 Morphology of POBCs and its effects on their diffusion properties 30

2.5.1 Types of heterogeneous structure 30

2.6 Some representatives of POBC as membrane materials and their properties 32

2.6.1 Polycarbonate–polysiloxanes 32

2.6.2 Polyurethane(urea)–polysiloxanes 39

2.6.3 Polyimide(amide)–polysiloxanes 42

2.7 Conclusions 45

References 46

3 Polysilalkylenes 53
Nikolay V. Ushakov, Stepan Guselnikov, and Eugene Finkelshtein

Acknowledgement 65

References 65

4 Polyvinylorganosilanes: The Materials for Membrane Gas Separation 69
Nikolay V. Ushakov

4.1 Introduction: Historical background 69

4.2 Syntheses and polymerization of vinyltriorganosilanes 71

4.2.1 Syntheses of vinyltriorganosilanes 71

4.2.2 Vinyltriorganosilane (VTOS) polymerization 73

4.3 Physico-chemical and membrane properties of polymeric PVTOS materials 88

4.4 Concluding remarks 94

Acknowledgement 95

References 95

5 Substituted Polyacetylenes 107
Toshikazu Sakaguchi, Yanming Hu, and Toshio Masuda

5.1 Introduction 107

5.2 Poly(1-trimethylsilyl-1-propyne) (PTMSP) and related polymers 110

5.2.1 Synthesis and general properties 110

5.2.2 Permeation of gases and liquids 112

5.2.3 Aging effect and cross-linking 114

5.2.4 Free volume 115

5.2.5 Nanocomposites and hybrids 116

5.3 Poly[1-phenyl-2-(p-trimethylsilylphenyl)acetylene] and related polymers 117

5.3.1 Polymer synthesis 118

5.3.2 Gas separation 121

5.4 Desilylated polyacetylenes 124

5.4.1 Desilylation of poly[1(p-trimethylsilylphenyl)-2-phenylacetylene] 124

5.4.2 PDPAs from precursor polymers with various silyl groups 125

5.4.3 Soluble poly(diphenylacetylene)s obtained by desilylation 127

5.4.4 Poly(diarylacetylene)s 128

5.5 Polar-group-containing polyacetylenes 130

5.5.1 Hydroxy group 130

5.5.2 Sulfonated and nitrated poly(diphenylacetylene)s 132

5.5.3 Other polar groups 134

5.6 Concluding remarks 135

References 136

6 Polynorbornenes 143
Eugene Finkelshtein, Maria Gringolts, Maksim Bermeshev, Pavel Chapala, and Yulia Rogan

6.1 Introduction 143

6.2 Monomer synthesis 144

6.2.1 Synthesis of silicon-substituted norbornenes and norbornadienes 145

6.2.2 Synthesis of Si-containing exo-tricyclo[4.2.1.02,5]non-7-enes 152

6.3 Metathesis polynorbornenes 163

6.4 Addition polymerization 183

6.4.1 Addition polynorbornenes and polynorbornenes with alkyl side groups 184

6.4.2 Silicon and germanium-substituted polynorbornenes 187

6.4.3 Composites with addition silicon-containing polytricyclononenes 205

6.5 Conclusions 209

Acknowledgement 210

References 210

7 Polycondensation Materials Containing Bulky Side Groups: Synthesis and Transport Properties 223
Susanta Banerjee and Debaditya Bera

7.1 Introduction 223

7.2 Synthesis of the polymers 224

7.2.1 Polyimides 224

7.2.2 Poly(arylene ether)s (PAEs) 227

7.2.3 Aromatic polyamides (PAs) 228

7.3 Effect of different bulky groups on polymer gas transport properties 229

7.3.1 Gas transport properties of the polyimides containing different bulky groups 229

7.3.2 Gas transport properties of polyamides containing different bulky groups 241

7.3.3 Gas transport properties of poly(arylene ether)s containing different bulky groups 248

7.3.4 Concluding remarks 263

References 265

8 Gas and Vapor Transport Properties of Si-Containing and Related Polymers 271
Yuri Yampolskii

8.1 Introduction 271

8.2 Rubbery Si-containing polymers 272

8.2.1 Polysiloxanes 272

8.2.2 Siloxane-containing copolymers (block copolymers, random copolymers and graft copolymers) 274

8.2.3 Polysilmethylenes 277

8.3 Glassy Si-containing polymers 278

8.3.1 Polymers with Si–O–Si bonds in side chains 278

8.3.2 Poly(vinyltrimethyl silane) and related vinylic polymers 282

8.3.3 Metathesis norbornene polymers 285

8.3.4 Additive norbornene polymers 286

8.3.5 Polyacetylenes 290

8.3.6 Other glassy Si-containing polymers 293

8.4 Free volume in Si-containing polymers 294

8.5 Concluding remarks 296

Acknowledgement 298

References 298

9 Modeling of Si-Containing Polymers 307
Joel R. Fried, Timothy Dubbs, and Morteza Azizi

9.1 Introduction 307

9.2 Main-chain silicon-containing polymers 309

9.2.1 Polysiloxanes 309

9.2.2 Polysilanes and silalkylene polymers 314

9.3 Side-chain silicon-containing polymers 316

9.3.1 Poly(vinyltrimethylsilane) 316

9.3.2 Poly[1-(trimethylsilyl)-1-propyne] 317

9.4 Conclusions 324

Appendices 325

9.A Molecular flexibility 325

9.B Simulation of diffusivity 325

9.B.1 Einstein relationship 325

9.B.2 VACF method 325

9.C Simulation of solubility: Widom method 325

9.D Molecular mechanics force fields 326

9.D.1 DREIDING 326

9.D.2 Polymer-consistent force field (pcff ) 326

9.D.3 GROMOS 326

9.D.4 COMPASS 326

References 327

10 Pervaporation and Evapomeation with Si-Containing Polymers 335
Tadashi Uragami

10.1 Introduction 335

10.2 Structural design of Si-containing polymer membranes 335

10.2.1 Chemical design of Si-containing polymer membrane materials 336

10.2.2 Physical construction of Si-containing polymer membranes 336

10.3 Pervaporation 337

10.3.1 Principle of pervaporation 337

10.3.2 Fundamentals of pervaporation 338

10.3.3 Solution–diffusion model in pervaporation 339

10.4 Evapomeation 340

10.4.1 Principle of evapomeation 340

10.4.2 Principle of temperature-difference controlled evapomeation 341

10.5 Technology of pervaporation with Si-containing polymer membranes 342

10.5.1 Alcohol permselective membranes 342

10.5.2 Hydrocarbon permselective membranes 353

10.5.3 Organic permselective membranes 360

10.5.4 Membranes for separation of organic–organic mixtures 361

10.5.5 Membranes for optical resolution 362

10.6 Technology of evapomeation with Si-containing polymer membranes 363

10.6.1 Permeation and separation by evapomeation 363

10.6.2 Concentration of ethanol by temperature-difference controlled evapomeation 364

10.7 Conclusions 365

References 365

11 Si-Containing Polymers in Membrane Gas Separation 373
Adele Brunetti, Leonardo Melone, Enrico Drioli, and Giuseppe Barbieri

Executive summary 373

11.1 Introduction 373

11.2 Si-containing polymer membranes used in gas separation 375

11.2.1 Silicon rubber membrane materials 375

11.2.2 Polyacetylene membrane materials 376

11.2.3 Polynorbornene membrane materials 378

11.2.4 Other Si-containing membrane materials 378

11.3 Separations 379

11.4 Membrane modules 381

11.5 Competing technologies for separation of gases 384

11.6 Applications 385

11.6.1 Air separation 385

11.6.2 Hydrogen separation 386

11.6.3 Hydrocarbon separation 390

11.6.4 VOC separation 392

References 393

Index 399