About the Authors.

Preface.

**1 Introduction.**

1.1 Microwaves and radio frequencies.

1.2 Frequency bands.

1.3 Applications.

Bibliography.

**2 Basic electromagnetic theory.**

2.1 Introduction.

2.2 Maxwell's equations.

2.3 Time-harmonic EM fields; polarization of a vector.

2.4 Maxwell's equations in the harmonic regime.

2.5 Boundary conditions.

2.6 Energy and power of the EM field; Poynting's theorem.

2.7 Some fundamental theorems.

2.8 Plane waves.

2.9 Solution of the wave equation in rectangular coordinates.

2.10 Reflection and transmission of plane waves; Snel's laws.

2.11 Electrodynamic potentials.

Bibliography.

**3 Guided EM propagation.**

3.1 Introduction.

3.2 Cylindrical structures; solution of Maxwell’s equations as TE, TM and TEM modes.

3.3 Modes of propagation as transmission lines.

3.4 Transmission lines as 1-D circuits.

3.5 Phase velocity, group velocity and energy velocity.

3.6 Properties of the transverse modal vectors et, ht; field expansion in a waveguide.

3.7 Loss, attenuation and power handling in real waveguides.

3.8 The rectangular waveguide.

3.9 The ridge waveguide.

3.10 The circular waveguide.

3.11 The coaxial cable.

3.12 The parallel-plate waveguide.

3.13 The stripline.

3.14 The microstrip line.

3.15 The coplanar waveguide.

3.16 Coupled lines.

Bibliography.

**4 Microwave circuits.**

4.1 Introduction.

4.2 Microwave circuit formulation.

4.3 Terminated transmission lines.

4.4 The Smith chart.

4.5 Power flow.

4.6 Matrix representations.

4.7 Circuit model of a transmission line section.

4.8 Shifting the reference planes.

4.9 Loaded two-port network.

4.10 Matrix description of coupled lines.

4.11 Matching of coupled lines.

4.12 Two-port networks using coupled-line sections.

Bibliography.

**5 Resonators and cavities.**

5.1 Introduction.

5.2 The resonant condition.

5.3 Quality factor or Q.

5.4 Transmission line resonators.

5.5 Planar resonators.

5.6 Cavity resonators.

5.7 Computation of the Q factor of a cavity resonator.

5.8 Dielectric resonators.

5.9 Expansion of EM fields.

Bibliography.

**6 Impedance matching.**

6.1 Introduction.

6.2 Fano's bound.

6.3 Quarter-wavelength transformer.

6.4 Multi-section quarter-wavelength transformers.

6.5 Line and stub transformers; stub tuners.

6.6 Lumped L networks.

**7 Passive microwave components.**

7.1 Introduction.

7.2 Matched loads.

7.3 Movable short circuit.

7.4 Attenuators.

7.5 Fixed phase shifters.

7.6 Junctions and interconnections.

7.7 Dividers and combiners.

7.8 Lumped element realizations.

7.9 Multi-beam forming networks.

7.10 Non-reciprocal components.

Bibliography.

**8 Microwave filters.**

8.1 Introduction.

8.2 Definitions.

8.3 Lowdpass prototype.

8.4 Semi-lumped lowdpass filters.

8.5 Frequency transformations.

8.6 Kuroda identities.

8.7 Immittance inverters.

Bibliography.

**9 Basic concepts for microwave component design.**

9.1 Introduction.

9.2 Cascaded linear two-port networks.9

9.3 Signal flow graphs.

9.4 Noise in two-port networks.

9.5 Nonlinear two-port networks.

9.6 Semiconductors devices.

9.7 Electrical models of high-frequency semiconductor devices.

Bibliography.

**10 Microwave control components.**

10.1 Introduction.

10.2 Switches.

10.3 Variable attenuators.

10.4 Phase shifters.

Bibliography.

**11 Amplifiers.**

11.1 Introduction.

11.2 Small-signal amplifiers.

11.3 Low-noise amplifiers.

11.4 Design of trial amplifier.

11.5 Power amplifiers.

11.6 Other amplifier configurations.

11.7 Some examples of microwave amplifiers.

Bibliography.

**12 Oscillators.**

12.1 Introduction.

12.2 General principles.

12.3 Negative resistance oscillators.

12.4 Positive feedback oscillators.

12.5 Standard oscillator configuration.

12.6 Design of a trial oscillator.

12.7 Oscillator specifications.

12.8 Special oscillators.

12.9 Design of a push-push microwave VCO.

Bibliography.

**13 Frequency converters.**

13.1 Introduction.

13.2 Detectors.

13.3 Mixers.

13.4 Frequency multipliers.

Bibliography.

**14 Microwave circuit technology.**

14.1 Introduction.

14.2 Hybrid and monolithic integrated circuits.

14.3 Basic MMIC elements.

14.4 Simulation models and layout libraries.

14.5 MMIC production technique.

14.6 RFIC.

**15 RF and microwave architectures.**

15.1 Introduction.

15.2 Review of modulation theory.

15.3 Transmitters.

15.4 Receivers.

15.5 Further concepts on RF transmitters and receivers.

15.6 Special radio functional blocks.

**16 Numerical methods and CAD.**

16.1 Introduction.

16.2 EM analysis.

16.3 Circuit analysis.

16.4 Optimization.

**17 Measurement instrumentation and techniques.**

17.1 Introduction.

17.2 Power meters.

17.3 Frequency meters.

17.4 Spectrum analyzers.

17.5 Wide-band sampling oscilloscopes.

17.6 Network analyzers.

17.7 Special test instruments.

Appendix A Useful relations from vector analysis and trigonometric function identities.

Appendix B Fourier transform.

Appendix C Orthogonality of the eigenvectors in ideal waveguides.

Appendix D Standard rectangular waveguides and coaxial cables.

Appendix E Symbols for electric diagrams.

Appendix F List of acronyms.

Index.