Skip to main content

Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials

Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials

Ralf B. Wehrspohn (Editor), Heinz-Siegfried Kitzerow (Editor), Kurt Busch (Editor)

ISBN: 978-3-527-40858-0

Mar 2008

445 pages

In Stock



`Nanophotonic Materials - Photonic Crystals, Plasmonics, and Metamaterials' summarizes the work and results of a consortium consisting of more than 20 German research groups concentrated on photonics crystals research over the last seven years. Illustrated throughout in full color, the book provides an overview of these novel materials, spanning the entire range from fundamentals to applications.
I. Linear and non-linear properties of photonic crystals
1. Solitary wave formation in one-dimensional photonic crystals (K.Busch)
2. Microscopic analysis of the optical and electronic properties of semiconductor photonic-crystal structures (T.S.Meier)
3. Functional 3D photonic films from polymer beads (R.Zentel)
4. Bloch modes and group velocity delay in coupled resonator chains (B.Moeller)
5. Coupled nanopillar waveguides, optical properties and applications (D.Chigrin)
6. Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses (R.Houbertz)
7. Ultra-low refractive index mesoporous substrates for waveguide structures (D.Konjhodzic)
8. Linear and nonlinear effects of light propagation in low-index photonic crystal slabs (R.Iliew)
9. Linear and non-linear optical experiments based on macroporous silicon photonic crystals (R.Wehrspohn)
10. Dispersive properties of photonic crystal waveguide resonators (M.Kamp)

II. Tuneable photonic crystals
1. Polymer based tuneable photonic crystals (J.H.Wülbern)
2. Tuneable photonic crystals obtained by liquid crystal infiltration (H.-S.Kitzerow)
3. Lasing in dye-doped chiral liquid crystals influence of defect modes (F.Podgornov)
4. Photonic crystals based on chiral liquid crystal (M.Ozaki)
5. Tunable superprism effect in photonic crystals (F.Gloeckler)

III. Photonic crystal fibres
1. Preparation and application of functionalized photonic crystal fibres (J.Kobelke)
2. Finite element simulation of radiation losses in photonic crystal fibers (J.Pomplun)

IV. Plasmonic and metamaterials
1 Optical Properties of Photonic/Plasmonic Structures in Nanocomposite Glass (H. Graener)
2. Optical properties of disordered metallic photonic crystal slabs (H.Giessen)
3. Superfocusing of optical beams below the diffraction limit by media with negative refraction (A.Husakou)
4. Negative refraction in 2D photonic crystal super-lattice; towards devices in the IR and visible ranges (Y.Neve-Oz)
5. Negative permeability around 630 nm in nanofabricated meander metamaterials (H.Schweizer)
""With its charts, in-depth research and explanations, it will prove an invaluable acquisition for specialty holdings."" (The Midwest Book Review, September 2008)