Skip to main content

Offshore and Coastal Modelling

Offshore and Coastal Modelling

P. P. G. Dyke (Editor), A. O. Moscardini (Editor), E. H. Robson (Editor)

ISBN: 978-1-118-66915-0

Mar 2013, American Geophysical Union

399 pages

Select type: O-Book

Description

Published by the American Geophysical Union as part of the Lecture Notes on Coastal and Estuarine Studies Series, Volume 12.

The papers contained in this volume were presented orally at the seventh POLYMODEL conference, held at Sunderland Polytechnic in the United Kingdom in May 1984 and sponsored by Barclays Bank PLC and Imperial Chemical Industries Ltd. The conferences are organised annually by the North East of England Polytechnic's Mathematical Modelling and Computer Simulation Group — POLYMODEL. The Group is a non-profit making organisation based on the mathematics department of the three polytechnics in the region and has membership drawn from those educational institutions and from regional industry. Its objective is to promote research and collaboration in mathematical and computer-based modelling.

CHAPTER 1 MODELLING IN OF FSHORE AND COASTAL ENGINEERING:
P. P. G. Dyke 1

CHAPTER 2 TIDES, STORM SURGES AND COASTAL CIRCULATIONS:
N. S. Heaps 3
2.1 Bathymetry 3
2.2 Tides and Tidal Currents 3
2.3 North Sea storm Surges 10
2.4 Two-dimensional Numerical Storm-surge Models 15
2.5 Surge Forecasting 26
2.6 Three-dimensional Models 40
2.7 Vertical Structure of Current 42

CHAPTER 3 MODELLING STORM SURGE CURRENT STRUCTURE:
A. M. Davies 55
3.1 Introduction 55
3.2 Spectral Model Formulation 55
3.3 Form of Vertical Eddy Viscosity 58
3.4 A 3-D Simulation Model of Surge Currents on the North-West European Shelf 65
3.5 A Mechanistic Model of Wind Induced Current Profiles 71
3.6 Concluding Remarks 77

CHAPTER 4 Optimally Controlled Hydrodynamics for Tidal Power from the Severn Estuary:
S. C. Ryrie 83
4.1 Introduction 83
4.2 Hydrodynamics 83
4.3 Optimal Control 85

CHAPTER 5 NUMERICAL MODELLING OF STORM SURGES IN RIVER ESTUARIES:
E. H.  Twizell
5.1 Introduction 93
5.2 Points to note in Modelling 93
5.3 The Aims of a Mathematical Model of Storm  Surges 95
5.4 The Differential Equations of the Model 98
5.5 Computational Aspects 102
5.6 Numerical Results : The Storm of 1953 105
5.7 Summary 107

CHAPTER 6 COASTAL SEDIMENT MODELLING: 109 
B. A. O'Connor
6.1 Introduction 109
6.2 Need for Computer Models 109
6.3 Model Types 111
6.4 Conclusions 132

CHAPTER 7 THE APPLICATION OF RAY METHODS TO WAVE REFRACTION STUDIES:
I. M. Townend & I. A. Savell
7.1 Introduction 137
7.2 Ray Models 139
7.3 Application of the Ray Model, a Simple Case 146
7.4 A Study including Wave Breaking 154
7.5 A Study including Diffraction and Reflection 161
7.6 Future Developments 163

CHAPTER 8 A MODEL FOR SURFACE WAVE GROWTH: 165
A. J. Croft
8.1 Introduction 165
8.2 Formulation of the Problem 166
8.3 First Order Solution 170
8.4 Second Order Solution 172
8.5 Third Order Solution 173
8.6 Wind Shear Stress 179
8.7 Conclusion 184

CHAPTER 9 POWER TAKE-OFF AND OUTPUT FROM THE SEA-LANCHESTER 187
CLAM WAVE ENERGY DEVICE:
F. P. Lockett
9.1 Introduction 187
9.2 Experimental Tests 187
9.3 Power Take-off Simulation 188

CHAPTER 10 NUMERICAL MODELLING OF ILFRACOMBE SEAWALL:
P. Hewson and P. Blackmore 201
10.1 Introduction 201
10.2 Finite Element Modelling of Ilfracombe Seawall 201
10.3 Need for a Finite Element Model Approach 202
10.4 Conclusions 215

CHAPTER 11 MODELLING THE PLAN SHAPE OF SHINGLE BEACHES: 219
A. H. Brampton and J. M. Motyka
11.1 Introduction 219
11.2 General Considerations when Modelling Beach Changes 221
11.3 Derivation of an Alongshore Transport Formula 225
11.4 Incipient Motion of Shingle 228
11.5 Discussion 231
11.6 Conclusions 232

CHAPTER 12 MATHEMATICAL MODELLING APPLICATIONS FOR OFFSHORE STRUCTURES:
P. J. Cookson
12.1 Introduction 235
12.2 Operational, Environmental and Foundation Condition 235
12.3 Structural Concepts 2 37
12.4 Fabrication 242
12.5 Construction 2 43
12.6 Load Out 244
12.7 Tow Out 246
12.8 Installation 247
12.9 Mathematical Modelling in Platform Design 247
12.10 Conclusions 250

HAPTER 13 MATHEMATICAL MODEL OF A MARINE HOSE-STRING AT A
BUOY : PART 1, STATIC PROBLEM:
M. J. Brown
13.1 Introduction 251
13.2 Assumptions 254
13.3 Equations 255
13.4 Boundary Conditions 256
13.5 Hose Radius 257
13.6 The Load 258
13.7 Method of Solution 259
13.8 Analytical Solutions for Simplified Models 261
13.9 Results 262
13.10 Applications 268
13.11 Conclusions 274
Appendix 1 2 77

CHAPTER 14 MATHEMATICAL MODEL OF A MARINE HOSE-STRING AT A
BUOY: PART 2, DYNAMIC PROBLEM: 279
M. J. Brown
14.1 Introduction 279
14.2 Equation of Motion 279
14.3 Boundary Conditions 281
14.4 Method of Solution 282
14.5 Flanges 284
14.6 Comparison of Analytical and Numerical Results 288
14.7 Numerical Results 289
14.8 Conclusions 298
Appendix 1 301

CHAPTER 15 THE DESIGN OF CATENARY MOORING SYSTEMS FOR OFFSHORE VESSELS: 303
A. K. Brook
15.1 Introduction 303
15.2 Representation of the Environment 305
15.3 Mathematical Model of Moored Vessel 307
15.4 Calculations of Environmental Forces and Moments 308
15.5 Calculation of Mooring Forces and Moments 314
15.6 Static Analysis 319
15.7 Response of Vessel to Wind Gusting and Wave Drift Action
15.8 Conclusions 320

CHAPTER 16 SOME PROBLEMS INVOLVING UMBILICALS, CABLES AND PIPES: 
D. G. Simmonds 323
16.1 Introduction 323
16.2 The Statics of Cables and Pipes 323
16.3 Hydrodynamic Forces 329
16.4 Analytical Solutions 333
16.5 Typical Problems and Numerical Solutions 338
16.6 Final Comments 348

CHAPTER 17 MATHEMATICAL MODELLING IN OFFSHORE CORROSION: 
A. Turnbull 353
17.1 Introduction 353
17.2 General Mass Transport Theory 355
17.3 Mathematical Modelling of the Electrochemistry in Cracks 356
17.4 Mathematical Modelling in Cathodic Protection Offshore  371
17.5 Mathematical Modelling of Crevice Corrosion and Protection  372
17.6 Mathematical Modelling of Corrosion in Concrete  372 
17.7 Conclusions  374

CHAPTER 18 FATIGUE CRACK GROWTH PREDICTIONS IN TUBULAR WELDED JOINTS: 
S. Dharmavasan 377
18.1 Introduction 377
18.2 Fatigue Crack Growth Behaviour of Tubular Joints  377
18.3 Theoretical Analysis of Crack Growth  385
18.4 Conclusions  392

Subject Index 394