Skip to main content

Power Systems-On-Chip: Practical Aspects of Design

Power Systems-On-Chip: Practical Aspects of Design

Bruno Allard (Editor)

ISBN: 978-1-119-37772-6

Nov 2016, Wiley-ISTE

340 pages

$108.99

Description

The book gathers the major issues involved in the practical design of Power Management solutions in wireless products as Internet-of-things. Presentation is not about state-of-the-art but about appropriation of validated recent technologies by practicing engineers. The book delivers insights on major trade-offs and a presentation of examples as a cookbook. The content is segmented in chapters to make access easier for the lay-person.

Preface xi

Introduction  xv
Bruno ALLARD

Chapter 1. Control Strategies and CAD Approach 1
Pedro ALOU, José A. COBOS, Jesus A. OLIVER, Bruno ALLARD, Benôit LABBE, Aleksandar PRODIC and Aleksandar RADIC

1.1. Objectives 2

1.2. Operation principle of three non-isolated converters  8

1.2.1. Buck converter operation 8

1.2.2. Boost converter operation 10

1.2.3. Buck-boost converter operation 11

1.3. Power stage 13

1.3.1. MOSFET switching an inductive load  13

1.3.2. Extracting the parasitic capacitance values using simulations  18

1.3.3. Power-stage design issues 19

1.3.4. Segmented power stage and multiphase operation 21

1.3.5. LC filter design space 22

1.4. Control stage  29

1.4.1. Voltage-mode control of the buck converter  29

1.4.2. The RHP zero of the boost converter  35

1.4.3. Current-mode control 37

1.4.4. Hysteretic and sliding-mode control 40

1.4.5. Ripple-based controls for fast dynamics 45

1.4.6. V1 concept: description and applicability  52

1.4.7. Overview of the synchronization of asynchronous modulations  59

1.4.8. PFM - pulse skipping: burst modes 62

1.5. Minimum voltage deviation controller  63

1.5.1. Introduction  64

1.5.2. Integrated circuit implementation and experimental results 67

1.6. CAD tools for PwrSoC design and optimization  69

1.6.1. Overview of the CAD requirements 71

1.6.2. Loss models for integrated inductors and semiconductors  73

1.6.3. Optimization algorithms 82

1.6.4. Outcome of the optimization (topology, area, loss, fsw, detailed design) 84

1.6.5. Impact of technology 87

1.7. Conclusion 91

Chapter 2. Magnetic Components for Increased Power Density 93
Santosh KULKARNI and Cian O’MATHUNA

2.1. Commercial and research trends towards PwrSiP and PwrSoC  96

2.2. Review of magnetics 104

2.2.1. Micro-inductor structures 104

2.2.2. Magnetic materials and processing for thin film integrated micro-magnetic devices 111

2.3. Figures of merit for performance of integrated magnetics  118

2.3.1. Figure of merit – DC performance  118

2.3.2. Figure of merit and AC performance  123

2.4. Technology roadmap and challenges 123

2.4.1. Market drivers 124

2.4.2. PwrSoC supply chain challenges 126

2.4.3. PwrSoC technology platform 127

2.4.4. Integrated magnetic devices for PwrSoC – opportunities 128

2.5. Conclusions  130

2.6. Acknowledgments 132

Chapter 3. Dielectric Components for Increased Power Density 133
Frédéric VOIRON

3.1. Introduction  133

3.2. Basics of dielectric physics  135

3.2.1. Forewords 135

3.2.2. Polarization, dipole and capacitance 135

3.2.3. Polarization mechanisms in dielectrics 136

3.2.4. Losses in dielectrics  139

3.3. Silicon integrated capacitors 140

3.3.1. Integrated capacitors for enhanced performance  141

3.4. Integrated capacitors for enhanced reliability  145

3.4.1. Dielectric processing 145

3.4.2. Lifetime considerations  149

3.5. Integrated capacitor optimization for power switching 150

3.5.1. Regular layout 150

3.5.2. Broad band modeling 150

3.5.3. Capacitance parasitic suppression  153

3.6. Conclusion 154

Chapter 4. On-board Power Management DC/DC Inductive Converter  157
Benoît LABBE and Bruno ALLARD

4.1. Specifications 157

4.1.1. Load-related requirements  158

4.1.2. System-related requirements 159

4.1.3. Power delivery network  161

4.2. Current-mode sliding-mode control implementation  161

4.2.1. System analysis: voltage regulation loops  162

4.2.2. System analysis: loop delay control 167

4.2.3. System analysis: switching frequency control 168

4.2.4. Design 169

4.2.5. Results 172

4.3. Conclusions . 174

Chapter 5. On-Chip Power Management DC/DC Switched-Capacitor Converter  179
Gael PILLONNET, Thomas SOUVIGNET and Bruno ALLARD

5.1. Topology description 180

5.1.1. Ratio calculation  180

5.1.2. Basic scheme  182

5.1.3. Steady-state modeling 183

5.2. Pros and cons  190

5.2.1. Key advantages  190

5.2.2. Main disadvantages  192

5.3. State-of-the-art 193

5.3.1. Research scope and main focus 194

5.3.2. Integration level  194

5.3.3. The point-of-load (POL) application  195

5.4. Design example  204

5.4.1. Landscape of demonstrated solutions  204

5.4.2. Selected architecture 207

Chapter 6. High-Switching Frequency Inductive DC/DC Converters  213
Christian MARTIN, Florian NEVEU and Bruno ALLARD

6.1. Context and topologies  214

6.1.1. Discussion on figures of merit  219

6.1.2. Outstanding state-of-the-art performances 224

6.2. Cascode power stage 225

6.3. High-quality decoupling 229

6.4. Design considerations for passive components 232

6.5. Integrated inductor characterization 235

6.5.1. Harmonic characterization  235

6.5.2. Time-domain characterization  237

6.5.3. Converter experimental characterization  242

6.6. Conclusion 246

6.7. Acknowledgments 247

Chapter 7. Hybrid and Multi-level Converter Topologies for On-Chip Implementation of Reduced Voltage-Swing Converters 249
Aleksandar PRODIC, Sheikh Mohammad AHSANUZZAMAN, Behzad MAHDAVIKHAH and Timothy MCRAE

7.1. Introduction  249

7.1.1. Inductor volume reduction through voltage swing minimization  251

7.2. Cascaded hybrid SC-inductive topologies  254

7.2.1. Merged switched-capacitor multi-phase buck (MSCB) converter  255

7.3. Hybrid serial input/output converters  262

7.3.1. HSI/O power processing efficiency and power division 265

7.3.2. Switched-capacitor conversion ratio 267

7.3.3. Passive volume and switch voltage stress  269

7.4. An on-chip integrated high-density power management solution for portable applications based on a multi-output switched-capacitor circuit 270

7.5. Multi-level and flying capacitor multi-level converters  279

7.6. Conclusion 282

Bibliography 285

List of Acronyms  311

List of Authors  315

Index  317