Skip to main content

Reconstructing Earth's Climate History: Inquiry-based Exercises for Lab and Class

Reconstructing Earth's Climate History: Inquiry-based Exercises for Lab and Class

Kristen St. John, R. Mark Leckie, Kate Pound, Megan Jones, Lawrence Krissek

ISBN: 978-1-118-37216-6

Mar 2015, Wiley-Blackwell

320 pages



The context for understanding global climate change today lies in the records of Earth’s past. This is demonstrated by decades of paleoclimate research by scientists in organizations such as the Integrated Ocean Drilling Program (IODP), the Antarctic Geological Drilling Program (ANDRILL), and many others.

The purpose of this full colour textbook is to put key data and published case studies of past climate change at your fingertips, so that you can experience the nature of paleoclimate reconstruction.

Using foundational geologic concepts, students explore a wide variety of topics, including:  marine sediments, age determination, stable isotope paleoclimate proxies, Cenozoic climate change, climate cycles, polar climates, and abrupt warming and cooling events, students are invited to evaluate published scientific data, practice developing and testing hypotheses, and infer the broader implications of scientific results.

It is our philosophy that addressing how we know is as important as addressing what we know about past climate change. Making climate change science accessible is the goal of this book.

This book is intended for earth science students at a variety of levels studying paleoclimatology, oceanography, Quaternary science, or earth-system science.

Additional resources for this book can be found at:


The Authors


Book Introduction for Students and Instructors

Geologic Timescale

Chapter 1. Introduction to Paleoclimate Records.

Part 1.1. Archives and Proxies

Part 1.2. Owens Lake – An Introductory Case Study of Paleoclimate Reconstruction

Part 1.3. Coring Glacial Ice and Seafloor Sediments

Chapter 2. Seafloor Sediments.

Part 2.1. Sediment Predictions

Part 2.2. Core Observations and Descriptions

Part 2.3. Sediment Composition

Part 2.4. Geographic Distribution and Interpretation

Chapter 3. Microfossils and Biostratigraphy.

Part 3.1. What are Microfossils? Why are they Important in Climate Change Science?

Part 3.2. Microfossils in Deep-sea Sediments

Part 3.3. Application of Microfossil First and Last Occurrences

Part 3.4. Using Microfossil Datums to Calculate Rates

Part 3.5. How Reliable are Microfossil Datums?

Chapter 4. Paleomagnetism and Magnetostratigraphy.

Part 4.1. Earth's Magnetic Field Today and the Paleomagnetic Record of Deep-Sea Sediments

Part 4.2. Paleomagnetism in Ocean Crust

Part 4.3. Using Paleomagnetism to Test the Seafloor Spreading Hypothesis

Part 4.4. The Geomagnetic Polarity Time Scale

Chapter 5. CO2 as a Climate Regulator during the Phanerozoic and Today.

Part 5.1. The Short Term Global Carbon Cycle

Part 5.2. CO2 and Temperature

Part 5.3. Recent Changes in CO2

Part 5.4. The Long-term Global Carbon Cycle, CO2, and Phanerozoic Climate History

Chapter 6. The Benthic Foraminiferal Oxygen Isotope Record of Cenozoic Climate Change.

Part 6.1. Introduction

Part 6.2. Stable Isotope Geochemistry

Part 6.3. A Biogeochemical Proxy

Part 6.4. Patterns, Trends and Implications for Cenozoic Climate

Chapter 7. Scientific Drilling in the Arctic Ocean: A Lesson on the Nature of Science.

Part 7.1. Climate Models and Regional Climate Change

Part 7.2. Arctic Drilling Challenges and Solutions

Part 7.3. The Need for Scientific Drilling

Part 7.4. Results of the Arctic Drilling Expedition

Chapter 8. Climate Cycles.

Part 8.1. Patterns and Periodicities

Part 8.2. Orbital Metronome

Part 8.3. A Break in the Pattern

Chapter 9. The Paleocene Eocene Thermal Maximum (PETM) Event.

Part 9.1. The Cenozoic δ13C Record and an Important Discovery

Part 9.2. Global Consequences of the PETM

Part 9.3. Bad Gas: Is Methane to Blame?

Part 9.4. How fast? How long?

Part 9.5. Global Warming Today and Lessons from the PETM

Chapter 10. Glaciation of Antarctica: The Oi1 Event.

Part 10.1. Initial Evidence

Part 10.2. Evidence for Global Change

Part 10.3. Mountain Building, Weathering, CO2 and Climate

Part 10.4. Legacy of the Oi1 Event: The Development of the Psychrosphere

Chapter 11. Antarctica and Neogene Global Climate Change.

Part 11.1. What do we Think we Know about the History of Antarctic Climate?

Part 11.2. What is Antarctica's Geographic & Geologic Context?

Part 11.3. Selecting Drillsites to Best Answer our Questions

Chapter 12. Interpreting Antarctic Sediment Cores: A Record of Dynamic Neogene Climate.

Part 12.1. What Sediment Facies are Common on the Antarctic Margin?

Part 12.2. ANDRILL 1-B The BIG Picture

Part 12.3. Pliocene Sedimentary Patterns in the ANDRILL 1-B Core

Ch. 13. Pliocene Warmth: Are We Seeing Our Future?

Part 13.1. The last 5 million years

Part 13.2. Sea Level Past, Present, and Future

Chapter 14. Northern Hemisphere Glaciation.

Part 14.1. Concepts & Predictions

Part 14.2. What is the Evidence?

Part 14.3. What Caused It?


"In developing Reconstructing Earth's Climate History, St John et al. say that they were driven by the philosophy that "addressing how we know is as important as addressing what we know about past climate". They have, without question, lived up to the billing. The book is composed of exercises based on authentic data, with well-constructed, full-color graphs, photos, tables, and diagrams. In fact, the graphic elements are the central features of this book, and the text, which is mostly organized by series of questions, tasks, and boxes, is supplementary - an entirely refreshing and inviting format that is designed to enhance inquiry-based learning by working directly with real paleoclimate data and their underlying geological concepts...St John et al. have provided a tremendous educational gift to the paleoclimate community. If you are in the field and want a textbook that will be sure to stimulate student interest in this important topic, look no further." (Eos, April 2013)

“This publication has added value for and warmly recommend to support not only courses in palaeoclimatology, but also courses in a wider array of interdisciplinary environmental sciences.”  (Int. J. Environment and Pollution, 1 May 2013)