Skip to main content

Resonances, Instability, and Irreversibility, Volume 99

Resonances, Instability, and Irreversibility, Volume 99

Ilya Prigogine (Editor), Stuart A. Rice (Editor)

ISBN: 978-0-470-14211-0

Sep 2009

456 pages

$384.99

Description

In Resonances, Instability, and Irreversibility: The Liouville Space Extension of Quantum Mechanics

T. Petrosky and I. Prigogine

Unstable Systems in Generalized Quantum Theory

E. C. G. Sudarshan, Charles B. Chiu, and G. Bhamathi

Resonances and Dilatation Analyticity in Liouville Space

Erkki J. Brandas

Time, Irreversibility, and Unstable Systems in Quantum Physics

E. Eisenberg and L. P. Horwitz

Quantum Systems with Diagonal Singularity

I. Antoniou and Z. Suchanecki

Nonadiabatic Crossing of Decaying Levels

V. V. and Vl. V. Kocharovsky and S. Tasaki

Can We Observe Microscopic Chaos in the Laboratory?

Pierre Gaspard

Proton Nonlocality and Decoherence in Condensed Matter -- Predictions and Experimental Results

C. A. Chatzidimitriou-Dreismann

"We are at a most interesting moment in the history of science. Classical science emphasized equilibrium, stability, and time reversibility. Now we see instabilities, fluctuations, evolution on all levels of observations. This change of perspective requires new tools, new concepts. This volume invites the reader not to an enumeration of final achievements of contemporary science, but to an excursion to science in the making." --from the Foreword by I. Prigogine

What are the dynamical roots of irreversibility? How can past and future be distinguished on the fundamental level of description? Are human beings the children of time --or its progenitors? In recent years, a growing number of chemists and physicists have agreed that the solution to the problem of irreversibility requires an extension of classical and quantum mechanics. There is, however, no consensus on which direction this extension should take to include the dynamical description of irreversible processes.

Resonances, Instability, and Irreversibility surveys recent attempts --both direct and indirect --to address the problem of irreversibility. Internationally recognized researchers report on their recent studies, which run the gamut from experimental to highly mathematical. The subject matter of these papers falls into three categories: classical systems with emphasis on chaos and dynamical instability, resonances and unstable quantum systems, and the general problem of irreversibility.

Presenting the cutting edge of research into some of the most compelling questions that face contemporary chemical physics, Resonances, Instability, and Irreversibility is fascinating reading for professionals and students in every area of the discipline.
The Liouville Space Extension of Quantum Mechanics (T. Petrosky & I. Prigogine).

Unstable Systems in Generalized Quantum Theory (E. Sudarshan, et al.).

Resonances and Dilation Analyticity in Liouville Space (E. Bandas).

Time, Irreversibility and Unstable Systems in Quantum Physics (E. Eisenberg & L. Horwitz).

Quantum Systems with Diagonal Singularity (I. Antoniou & Z. Suchanecki).

Nonadiabatic Crossing of Decaying Levels (V. Kocharovsky, et al.).

Can We Observe Microscopic Chaos in the Laboratory?

(P. Gaspard) Proton Nonlocality and Decoherence in Condensed Matter-Predictions and Experimental Results (C. Chatzidimitriou-Dreismann).

Indexes.