Skip to main content

Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance, 2nd Edition

Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance, 2nd Edition

Louis J. Ippolito Jr.

ISBN: 978-1-119-25937-4

May 2017

460 pages

Description

The first edition of Satellite Communications Systems Engineering (Wiley 2008) was written for those concerned with the design and performance of satellite communications systems employed in fixed point to point, broadcasting, mobile, radio navigation, data relay, computer communications, and related satellite based applications. This welcome Second Edition continues the basic premise and enhances the publication with the latest updated information and new technologies developed since the publication of the first edition.  The book is based on graduate level satellite communications course material and has served as the primary text for electrical engineering Masters and Doctoral level courses in satellite communications and related areas. Introductory to advanced engineering level students in electrical, communications and wireless network courses, and electrical engineers, communications engineers, systems engineers, and wireless network engineers looking for a refresher will find this essential text invaluable.

Related Resources

Instructor

Request an Evaluation Copy for this title

List of Acronyms xiii

Preface to Second Edition xix

1 Introduction to Satellite Communications 1

1.1 Early History of Satellite Communications 3

1.1.1 SCORE 3

1.1.2 ECHO 3

1.1.3 COURIER 4

1.1.4 WESTFORD 4

1.1.5 TELSTAR 4

1.1.6 RELAY 4

1.1.7 SYNCOM 5

1.1.8 EARLYBIRD 5

1.1.9 APPLICATIONS TECHNOLOGY SATELLITE-1, ATS-1 5

1.1.10 ATS-3 5

1.1.11 ATS-5 6

1.1.12 ANIK A 6

1.1.13 ATS-6 6

1.1.14 CTS 8

1.2 Some Basic Communications Satellite System Definitions 9

1.2.1 Satellite Communications Segments 9

1.2.2 Satellite Link Parameters 10

1.2.3 Satellite Orbits 11

1.2.4 Frequency Band Designations 13

1.3 Overview of Book Structure and Topics 13

References 15

2 Satellite Orbits 17

2.1 Kepler’s Laws 18

2.2 Orbital Parameters 19

2.3 Orbits in Common Use 22

2.3.1 Geostationary Orbit 23

2.3.2 Low Earth Orbit 25

2.3.3 Medium Earth Orbit 26

2.3.4 Highly Elliptical Orbit 26

2.3.5 Polar Orbit 27

2.4 Geometry of GSO Links 27

2.4.1 Range to Satellite 29

2.4.2 Elevation Angle to Satellite 29

2.4.3 Azimuth Angle to Satellite 30

2.4.4 Sample Calculation 31

References 33

Problems 33

3 Satellite Subsystems 35

3.1 Satellite Bus 36

3.1.1 Physical Structure 37

3.1.2 Power Subsystem 38

3.1.3 Attitude Control 39

3.1.4 Orbital Control 39

3.1.5 Thermal Control 41

3.1.6 Electronic Propulsion Satellites 42

3.1.7 Tracking, Telemetry, Command, and Monitoring 43

3.2 Satellite Payload 45

3.2.1 Transponder 45

3.2.2 Antennas 47

References 48

4 The RF Link 49

4.1 Transmission Fundamentals 49

4.1.1 Effective Isotropic Radiated Power 51

4.1.2 Power Flux Density 51

4.1.3 Antenna Gain 52

4.1.4 Free-Space Path Loss 55

4.1.5 Basic Link Equation for Received Power 56

4.2 System Noise 59

4.2.1 Noise Figure 61

4.2.2 Noise Temperature 63

4.2.3 System Noise Temperature 66

4.2.4 Figure of Merit 69

4.3 Link Performance Parameters 70

4.3.1 Carrier-to-Noise Ratio 70

4.3.2 Carrier-to-Noise Density 72

4.3.3 Energy-per-Bit to Noise Density 72

Reference 73

Problems 73

5 Link System Performance 75

5.1 Link Considerations 75

5.1.1 Fixed Antenna Size Link 76

5.1.2 Fixed Antenna Gain Link 77

5.1.3 Fixed Antenna Gain, Fixed Antenna Size Link 77

5.2 Uplink 79

5.2.1 Multiple Carrier Operation 81

5.3 Downlink 81

5.4 Percent of Time Performance Specifications 82

References 84

Problems 85

6 Transmission Impairments 87

6.1 Radiowave Frequency and Space Communications 87

6.2 Radiowave Propagation Mechanisms 89

6.2.1 Absorption 90

6.2.2 Scattering 90

6.2.3 Refraction 90

6.2.4 Diffraction 90

6.2.5 Multipath 90

6.2.6 Scintillation 90

6.2.7 Fading 90

6.2.8 Frequency Dispersion 90

6.3 Propagation Below About 3 GHz 92

6.3.1 Ionospheric Scintillation 95

6.3.2 Polarization Rotation 97

6.3.3 Group Delay 98

6.3.4 Dispersion 99

6.4 Propagation Above About 3 GHz 100

6.4.1 Rain Attenuation 101

6.4.2 Gaseous Attenuation 105

6.4.3 Cloud and Fog Attenuation 107

6.4.4 Depolarization 108

6.4.5 Tropospheric Scintillation 114

6.5 Radio Noise 117

6.5.1 Specification of Radio Noise 119

6.5.2 Noise From Atmospheric Gases 121

6.5.3 Sky Noise Due To Rain 124

6.5.4 Sky Noise Due to Clouds 125

6.5.5 Noise From Extra-Terrestrial Sources 126

References 134

Problems 135

7 Propagation Effects Modeling and Prediction 138

7.1 Atmospheric Gases 138

7.1.1 Leibe Complex Refractivity Model 139

7.1.2 ITU-R Gaseous Attenuation Models 140

7.2 Clouds and Fog 152

7.2.1 ITU-R Cloud Attenuation Model 153

7.2.2 Slobin Cloud Model 155

7.3 Rain Attenuation 162

7.3.1 ITU-R Rain Attenuation Model 162

7.3.2 Crane Rain Attenuation Models 176

7.4 Depolarization 187

7.4.1 Rain Depolarization Modeling 188

7.4.2 Ice Depolarization Modeling 190

7.5 Tropospheric Scintillation 194

7.5.1 Karasawa Scintillation Model 194

7.5.2 ITU-R Scintillation Model 197

7.5.3 van de Camp Cloud Scintillation Model 199

References 201

Problems 203

8 Rain Fade Mitigation 205

8.1 Power Restoral Techniques 205

8.1.1 Beam Diversity 206

8.1.2 Power Control 207

8.1.3 Site Diversity 211

8.1.4 Orbit Diversity 227

8.2 Signal Modification Restoral Techniques 229

8.2.1 Frequency Diversity 230

8.2.2 Bandwidth Reduction 231

8.2.3 Time-Delayed Transmission Diversity 231

8.2.4 Adaptive Coding and Modulation 231

8.3 Summary 232

References 232

Problems 233

9 The Composite Link 235

9.1 Frequency Translation (FT) Satellite 236

9.1.1 Uplink 236

9.1.2 Downlink 238

9.1.3 Composite Carrier-to-Noise Ratio 238

9.1.4 Performance Implications 243

9.1.5 Path Losses and Link Performance 244

9.2 On-Board Processing (OBP) Satellite 248

9.2.1 OBP Uplink and Downlink 250

9.2.2 Composite OBP Performance 250

9.3 Comparison of FT and OBP Performance 252

9.4 Intermodulation Noise 255

9.5 Link Design Summary 257

References 258

Problems 258

10 Satellite Communications Signal Processing 261

10.1 Analog Systems 261

10.1.1 Analog Baseband Formatting 262

10.1.2 Analog Source Combining 264

10.1.3 Analog Modulation 264

10.2 Digital Baseband Formatting 270

10.2.1 PCM Bandwidth Requirements 273

10.2.2 Nearly Instantaneous Companding (NIC) 273

10.2.3 Adaptive Delta Modulation (ADM) or Continuously Variable Slope Delta Modulation (CVSD) 273

10.2.4 Adaptive Differential PCM (ADPCM) 274

10.3 Digital Source Combining 274

10.4 Digital Carrier Modulation 275

10.4.1 Binary Phase Shift Keying 278

10.4.2 Quadrature Phase Shift Keying 280

10.4.3 Higher Order Phase Modulation 283

10.5 Summary 283

Reference 284

Problems 284

11 Satellite Multiple Access 286

11.1 Frequency Division Multiple Access 289

11.1.1 PCM/TDM/PSK/FDMA 290

11.1.2 PCM/SCPC/PSK/FDMA 292

11.2 Time Division Multiple Access 293

11.2.1 PCM/TDM/PSK/TDMA 294

11.2.2 TDMA Frame Efficiency 295

11.2.3 TDMA Capacity 296

11.2.4 Satellite Switched TDMA 299

11.3 Code Division Multiple Access 303

11.3.1 Direct Sequence Spread Spectrum 306

11.3.2 Frequency Hopping Spread Spectrum 309

11.3.3 CDMA Processing Gain 310

11.3.4 CDMA Capacity 312

References 314

Problems 314

12 The Mobile Satellite Channel 316

12.1 Mobile Channel Propagation 316

12.1.1 Reflection 317

12.1.2 Diffraction 318

12.1.3 Scattering 318

12.2 Narrowband Channel 321

12.2.1 Path Loss Factor 323

12.2.2 Shadow Fading 327

12.2.3 Multipath Fading 333

12.2.4 Blockage 340

12.2.5 Mixed Propagation Conditions 346

12.3 Wideband Channel 348

12.4 Multi-Satellite Mobile Links 351

12.4.1 Uncorrelated Fading 351

12.4.2 Correlated Fading 353

References 355

13 Spectrum Management in Satellite Communications 357

13.1 Spectrum Management Functions and Activities 357

13.1.1 International Spectrum Management 358

13.1.2 World Radiocommunication Conference (WRC) 361

13.1.3 Frequency Allocation Process 361

13.1.4 Spectrum Management in the United States 365

13.2 Methods of Radio Spectrum Sharing 368

13.2.1 Frequency Separation 369

13.2.2 Spatial Separation 371

13.2.3 Time Separation 372

13.2.4 Signal Separation 372

13.3 Spectrum Efficiency Metrics 372

13.3.1 Spectrum Utilization Factor (U) 373

13.3.2 Spectrum Utilization Efficiency (SUE) 373

References 374

Problems 374

14 Interference Mitigation in Satellite Communications 376

14.1 Interference Designations 376

14.2 Modes of Interference for Satellite Services Networks 377

14.2.1 Interference Between Space and Terrestrial Services Systems 377

14.2.2 Interference Between Space Services Networks 378

14.2.3 Interference Between Space Services Networks with Reverse Band Allocations 379

14.3 Interference Propagation Mechanisms 379

14.3.1 Line-of-Sight Interference 381

14.3.2 Diffraction 382

14.3.3 Tropospheric Scatter 383

14.3.4 Surface Ducting and Layer Reflection 383

14.3.5 Hydrometeor (Rain) Scatter 384

14.4 Interference and the RF Link 386

14.4.1 Single Interferer (pfd) 387

14.4.2 Multiple Interferers (epfd) 387

14.5 Coordination for Interference Mitigation 388

14.5.1 Radio-Climate Zones 390

14.5.2 Distance Limits 391

14.5.3 Coordination Distance for Mode (1) Propagation 392

14.5.4 Coordination Distance for Mode (2) Propagation 393

14.5.5 ITU-R Coordination Procedures for Satellite and Terrestrial Services 394

References 395

Problems 396

15 High Throughput Satellites 398

15.1 Evolution of Satellite Broadband 399

15.2 Multiple Beam Antennas and Frequency Reuse 401

15.2.1 Multiple Beam Antenna Array Design 402

15.2.2 Adjacent Beam SIR 406

15.3 HTS Ground Systems Infrastructure 412

15.3.1 Network Architectures 412

15.3.2 Frequency Band Options 413

15.4 Satellite HTS and 5G 416

15.4.1 Cellular Mobile Technology Development 416

15.4.2 Satellite 5G Technologies 418

References 422

Appendix Error Functions and Bit Error Rate 423

A.1 Error Functions 423

A.2 Approximation for BER 425

Index 427