Skip to main content

The Statistical Analysis of Time Series

The Statistical Analysis of Time Series

Theodore W. Anderson

ISBN: 978-1-118-15039-9 September 2011 704 Pages




The Wiley Classics Library consists of selected books that havebecome recognized classics in their respective fields. With thesenew unabridged and inexpensive editions, Wiley hopes to extend thelife of these important works by making them available to futuregenerations of mathematicians and scientists. Currently availablein the Series: T. W. Anderson Statistical Analysis of Time SeriesT. S. Arthanari & Yadolah Dodge Mathematical Programming inStatistics Emil Artin Geometric Algebra Norman T. J. Bailey TheElements of Stochastic Processes with Applications to the NaturalSciences George E. P. Box & George C. Tiao Bayesian Inferencein Statistical Analysis R. W. Carter Simple Groups of Lie TypeWilliam G. Cochran & Gertrude M. Cox Experimental Designs,Second Edition Richard Courant Differential and Integral Calculus,Volume I Richard Courant Differential and Integral Calculus, VolumeII Richard Courant & D. Hilbert Methods of MathematicalPhysics, Volume I Richard Courant & D. Hilbert Methods ofMathematical Physics, Volume II D. R. Cox Planning of ExperimentsHarold M. S. Coxeter Introduction to Modern Geometry, SecondEdition Charles W. Curtis & Irving Reiner Representation Theoryof Finite Groups and Associative Algebras Charles W. Curtis &Irving Reiner Methods of Representation Theory with Applications toFinite Groups and Orders, Volume I Charles W. Curtis & IrvingReiner Methods of Representation Theory with Applications to FiniteGroups and Orders, Volume II Bruno de Finetti Theory ofProbability, Volume 1 Bruno de Finetti Theory of Probability,Volume 2 W. Edwards Deming Sample Design in Business Research Amosde Shalit & Herman Feshbach Theoretical Nuclear Physics, Volume1 --Nuclear Structure J. L. Doob Stochastic Processes NelsonDunford & Jacob T. Schwartz Linear Operators, Part One, GeneralTheory Nelson Dunford & Jacob T. Schwartz Linear Operators,Part Two, Spectral Theory--Self Adjoint Operators in Hilbert SpaceNelson Dunford & Jacob T. Schwartz Linear Operators, PartThree, Spectral Operators Herman Fsehbach Theoretical NuclearPhysics: Nuclear Reactions Bernard Friedman Lectures onApplications-Oriented Mathematics Gerald d. Hahn & Samuel S.Shapiro Statistical Models in Engineering Morris H. Hansen, WilliamN. Hurwitz & William G. Madow Sample Survey Methods and Theory,Volume I--Methods and Applications Morris H. Hansen, William N.Hurwitz & William G. Madow Sample Survey Methods and Theory,Volume II--Theory Peter Henrici Applied and Computational ComplexAnalysis, Volume 1--Power Series--lntegration--ConformalMapping--Location of Zeros Peter Henrici Applied and ComputationalComplex Analysis, Volume 2--Special Functions--IntegralTransforms--Asymptotics--Continued Fractions Peter Henrici Appliedand Computational Complex Analysis, Volume 3--Discrete FourierAnalysis--Cauchy Integrals--Construction of ConformalMaps--Univalent Functions Peter Hilton & Yel-Chiang Wu A Coursein Modern Algebra Harry Hochetadt Integral Equations Erwin O.Kreyezig Introductory Functional Analysis with Applications WilliamH. Louisell Quantum Statistical Properties of Radiation All HasanNayfeh Introduction to Perturbation Techniques Emanuel ParzenModern Probability Theory and Its Applications P.M. Prenter Splinesand Variational Methods Walter Rudin Fourier Analysis on Groups C.L. Siegel Topics in Complex Function Theory, Volume I--EllipticFunctions and Uniformization Theory C. L. Siegel Topics in ComplexFunction Theory, Volume II--Automorphic and Abelian integrals C. LSiegel Topics in Complex Function Theory, Volume III--AbelianFunctions & Modular Functions of Several Variables J. J. StokerDifferential Geometry J. J. Stoker Water Waves: The MathematicalTheory with Applications J. J. Stoker Nonlinear Vibrations inMechanical and Electrical Systems
The Use of Regression Analysis.

Trends and Smoothing.

Cyclical Trends.

Linear Stochastic Models with Finite Numbers of Parameters.

Serial Correlation.

Stationary Stochastic Processes.

The Sample Mean, Covariances, and Spectral Density.

Estimation of the Spectral Density.

Linear Trends with Stationary Random Terms.