Skip to main content

Thermal Analysis of Polymers: Fundamentals and Applications

Thermal Analysis of Polymers: Fundamentals and Applications

Joseph D. Menczel (Editor), R. Bruce Prime (Editor)

ISBN: 978-1-118-99599-0

Jul 2014

696 pages



  • Presents a solid introduction to thermal analysis, methods, instrumentation, calibration, and application along with the necessary theoretical background.
  • Useful to chemists, physicists, materials scientists, and engineers who are new to thermal analysis techniques, and to existing users of thermal analysis who wish expand their experience to new techniques and applications
  • Topics covered include Differential Scanning Calorimetry and Differential Thermal Analysis (DSC/DTA), Thermogravimetry, Thermomechanical Analysis and Dilatometry, Dynamic Mechanical Analysis, Micro-Thermal Analysis, Hot Stage Microscopy, and Instrumentation.
  • Written by experts in the various areas of thermal analysis
  • Relevant and detailed experiments and examples follow each chapter.
Chapter I: Introduction (Joseph D. Menczel, R. Bruce Prime and Patrick K. Gallagher).

Chapter II: Differential Scanning Calorimetry (Joseph D. Menczel, Lawrence H. Judovits, R. Bruce Prime, Harvey E. Bair, Mike Reading, and Steven Swier).

1. Introduction.

2. Elements of Thermodynamics in DSC.

3. The Basics of Differential Scanning Calorimetry.

4. Purity Determination of Low Molecular Mass Compounds by DSC.

5. Calibration of Differential Scanning Calorimeters.

6. The Measurement of Heat Capacity.

7. Phase Transitions in Amorphous and Crystalline Polymers.

8. DSC of Fibers.

9. Films.

10. Thermosets.

11. Differential Photocalorimetry (DPC).

12. Fast Scan DSC.

13. Modulated Temperature Differential Scanning Calorimetry (MTDSC).

14. How to Perform DSC Measurements .

15. Instrumentation.


Chapter III: Thermogravimetric Analysis (TGA) (R. Bruce Prime, Harvey E. Bair, Sergey Vyazovkin, Patrick K. Gallagher, and Alan Riga).

1. Introduction.

2. Background Principles and Measurement Modes.

3. Calibration and Reference Materials.

4. Measurements and Analyses.

5. Kinetics.

6. Selected Applications.

7. Instrumentation.



Chapter IV: Thermomechanical Analysis (TMA) and Thermodilitometry (TD) (Harvey E. Bair, Ali E. Akinay, Joseph D. Menczel, R. Bruce Prime, and Michael Jaffe).

1. Introduction.

2. Principles and Theory.

3. Instrumental.

4. Calibration.

5. How to Perform a TMA Experiment.

6. Key Applications.

7. Selected Industrial Applications.



Chapter V: Dynamic Mechanical Analysis (DMA) (Richard P. Chartoff, Joseph D. Menczel, and Steven H. Dillman).

1. Introduction.

2. Characterization of viscoelastic behavior.

3. Applications of dynamic mechanical analysis.

4. Examples of DMA characterization for thermoplastics.

5. Characteristics of fibers and thin films.

6. DMA characterization of cross-linked polymers.

7. Practical Aspects of Conducting DMA Experiments.

8. Commercial DMA Instrumentation.



Chapter VI: Dielectric Analysis (DEA) (Aglaia Vassilikou-Dova and Ioannis M. Kalogeras).

1. Introduction.

2. Theory and background of dielectric analysis.

3. Dielectric techniques.

4. Performing dielectric experiments.

5. Typical measurements on poly(methyl methacrylate) (PMMA).

6. Dielectric Analysis of Thermoplastics.

7. Dielectric Analysis of Thermosets.

8. Instrumentation.



Chapter VII: Micro and Nano Scale Local Thermal Analysis (Valeriy V. Gorbunov, David Grandy, Mike Reading, and Vladimir V. Tsukruk).

1. Introduction.

2. The Atomic Force Microscope.

3. Scanning Thermal Microscopy.

4. Thermal Probe Design and Spatial Resolution.

5. Measuring Thermal Conductivity and Thermal Force-Distance Curves.

6. Local Thermal Analysis.

7. Performing a Micro/Nano Thermal Analysis Experiment.

8. Examples of Micro/Nano Thermal Analysis Applications.

9. Overview of Local Thermal Analysis.


""I have read it with great pleasure and it is my honor to provide this short review. Let me congratulate the editors on the concept of this book. They managed to tune the balance between basic principles and practical information finely . . .In conclusion I think that this book is very useful for students, PhDs, and researchers who are dealing or intended to deal with thermal analysis of polymers."" (J Therm Anal Calorim, 2010)