Skip to main content

Thermal Biophysics of Membranes

Thermal Biophysics of Membranes

Thomas Heimburg

ISBN: 978-3-527-61159-1

Sep 2007

378 pages


An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade.
The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity.
Also included is a discussion of the application of computer simulations on membranes.
For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.
1. Membranes: An Introduction
2. Membrane Structure
3. The Composition of Biological Membranes
4. Introduction into Thermodynamics
5. Water
6. Lipid Melting
7. Phase Diagrams
8. Statistical Models for Lipid Melting
9. Lipid-Protein Interactions
10. Diffusion
11. Electrostatics
12. Adsorption, Binding and Insertion of Proteins
13. Elasticity and Curvature
14. Thermodynamics of the Elastic Constants
15. Structural Transitions
16. Relaxation Processes in Membranes
17. Permeability
18. Nerve Pulse Propagation
19. Anesthesia