Skip to main content

Wireless Data Technologies

Wireless Data Technologies

Vern A. Dubendorf

ISBN: 978-0-470-86135-6

Apr 2003

254 pages

Description

The expansion and popularity of the Internet, along with the addition of wireless data functionality to wireless networks, has also contributed greatly to the growth of the wireless industry. In fact, the anticipated consumer demand for high bandwidth wireless data is commonly seen as the driving force behind current network upgrades and expansions. The number and types of companies aggressively investing in wireless technologies illustrate the importance of wireless data. Non-traditional telecommunications companies such as Cisco Systems, Intel, Microsoft, 3Com, and other professional services companies, are investing heavily in wireless product development and many have formed partnerships with wireless infrastructure manufacturers to help deliver wireless data services seamlessly to consumers.

Written by a respected author this self-contained overview of wireless date technologies will provide a highly sought after technical reference to all those working within the main areas of Wireless Data Services.
* Provides a self-contained reference which discusses the key wireless technologies including security
* Presents an overview of the wireless industry and its key components such as GSM, GPRS, CDMA, TDMA, UMTS, cdma2000, and Spread Spectrum, 802.11, 15 and 16 standards
* Discusses the currently hot topic of Wireless Security
* Includes a Foreword by Dr Bill Hancock, Chief Security Officer, Exodus Communications/Cable & Wireless
* Provides a ready reference as well as a reference to additional materials on each topic
Essential reading for all staff working for Telecom companies: engineers, researchers, managers etc.

Dedication xv

Foreword xvii

Preface xix

Acknowledgments xxi

1 A History of Wireless Technologies 1

1.1 Introduction 1

1.2 Where it all began – Marconi 1

1.3 Packet Data 4

1.4 Voice Technologies 6

1.5 Cellular Technologies 6

2 Understanding Spread Spectrum Technologies 7

2.1 Introduction 7

2.2 What Spread Spectrum Does 8

2.3 How Spread Spectrum Works 9

2.3.1 Frequency Hopping 9

2.3.2 Direct Sequence 10

2.4 Frequency Hopping Spread Spectrum 10

2.5 Direct Sequence Spread Spectrum 13

3 Multiple Access Wireless Communications 17

3.1 Introduction 17

3.2 CDMA Overview 18

3.3 Introduction to CDMA 19

3.4 Principles of CDMA 20

3.5 Common Air Interface 21

3.6 Forward CDMA Channel 22

3.7 Frequency Plan 22

3.8 Transmission Parameters 22

3.9 Overhead Channels 23

3.9.1 Pilot Channel 23

3.9.2 Sync Channel 23

3.9.3 Paging Channel 24

3.9.4 Traffic Channel 24

3.10 Soft Handoff 24

3.11 Rate 25

3.12 Power Control Subchannel 25

3.13 Timing 25

3.14 Reverse CDMA Channel 25

3.14.1 Frequency Plan 26

3.14.2 Transmission Parameters 26

3.15 Signal Structure 26

3.15.1 Channelization 26

3.15.2 Separation of Users 26

3.15.3 Orthogonal Modulation 27

3.15.4 Traffic Channel 27

3.15.5 Soft Handoff 27

3.15.6 Rate 27

3.15.7 Timing 28

3.16 TDMA 28

3.16.1 TDMA Standards 29

4 GSM 31

4.1 Introduction 31

4.2 Overview 32

4.2.1 The Mobile Station (MS) 34

4.2.2 The Base Station Subsystem (BSS) 34

4.2.3 The Base Transceiver Station (BTS) 34

4.2.4 The Network Subsystem 35

4.2.5 The Operation and Maintenance Center (OMC) 36

4.3 Interfaces and Protocols 36

4.3.1 Protocols 37

4.3.2 The Air Interface 38

4.3.3 Logical Channels on the Air Interface 41

4.3.4 Traffic Channels on the Air Interface 42

4.3.5 Signaling Channels on the Air Interface 43

4.3.6 Burst Formats 45

5 GPRS (General Packet Radio Service) for GSM 47

5.1 Introduction 47

5.2 Always Online 49

5.3 Differences between GPRS/GSM and cdmaOne 49

5.3.1 GSM 49

5.3.2 cdmaOne IS-95 50

5.3.3 Analysis 50

6 iMode 51

6.1 Introduction 51

6.2 What is iMode? 51

6.2.1 What does a Typical iMode Screen look like? 52

6.3 Technology 52

6.3.1 Smart Phone 52

6.3.2 Transmission System 53

6.3.3 Markup Language 53

6.4 Impacts to Information Systems 53

6.5 Why is iMode so Successful? 54

6.5.1 Bandwidth for Downloading Data 54

6.6 Security on iMode 55

6.7 iMode 4G 55

6.7.1 4G Data Rates in Japan 56

6.8 Conclusion 56

7 UMTS 57

7.1 Introduction 57

7.2 What is UMTS? 58

7.3 A Brief History of UMTS 58

7.4 Spectrum for UMTS 59

7.5 Phases Towards the Development of UMTS 59

7.6 UMTS/3G Industry 60

7.6.1 Cost 60

7.7 3G and UMTS Technology 60

7.8 3G Network Planning 61

7.8.1 Prerequisite for a 3G Network Design 61

7.8.2 Operator’s Business Plan 62

7.8.3 UMTS License Agreement 62

7.8.4 Operators Funding Plan 62

7.8.5 Operators Risk Analysis Documents 62

7.8.6 Consultant Reports 63

7.8.7 Government Statistics 63

7.8.8 RAN Planning 66

7.8.9 Core Network Planning 68

7.8.10 UMTS Security 69

7.8.11 3G and LAN Data Speeds 70

7.8.12 3G Frequencies 71

7.9 Owners of the 3G Networks 72

8 Wireless Data Networks 81

8.1 Data Networks and Internetworking 82

8.1.1 What is an Internetwork? 82

8.1.2 Open System Interconnection Reference Model 84

8.1.3 OSI Protocols 85

8.1.4 OSI Model and Communication Between Systems 86

8.2 The OSI Layers 88

8.2.1 The Physical Layer – OSI Layer 1 88

8.2.2 The Link Layer – OSI Layer 2 89

8.2.3 The Network Layer – OSI Layer 3 89

8.2.4 The Transport Layer – OSI Layer 4 90

8.2.5 The Session Layer – OSI Layer 5 90

8.2.6 The Presentation Layer – OSI Layer 6 91

8.2.7 The Application Layer – OSI Layer 7 91

8.3 ISO Hierarchy of Networks 92

8.4 Internetwork Addressing 92

8.4.1 Data Link Layer Addresses 93

8.4.2 MAC Addresses 93

8.4.3 Mapping Addresses 93

8.4.4 Network Layer Addresses 95

8.4.5 Hierarchical Versus Flat Address Space 95

8.4.6 Address Assignments 95

8.4.7 Addresses Versus Names 96

8.5 Introduction to Wireless Data Networks 96

8.5.1 802.11 Types – What do they all mean? 96

8.6 MAC 98

8.7 PHY 99

8.7.1 Direct Sequence Spread Spectrum (DSSS) PHY 100

8.7.2 The Frequency Hopping Spread Spectrum (FHSS) PHY 100

8.7.3 Infrared (IR) PHY 100

8.7.4 Physical Layer Extensions to IEEE 802.11 100

8.7.5 Geographic Regulatory Bodies 101

8.8 The 802.11 Standards (WLAN or WI-FI) 102

8.8.1 Defining Wireless LAN Requirements 102

8.8.2 Minimizing 802.11 Interference Issues 104

8.8.3 Multipath Propagation Defined 106

8.8.4 A Typical Design and Deployment 107

8.9 Security 131

8.9.1 Potential Security Issues with Wireless LAN Systems 132

8.10 Overview of 802.11b Security Mechanisms 132

8.10.1 SSID – Network Name 133

8.10.2 WEP – Wired Equivalent Privacy 134

8.11 Authentication and Association 136

8.11.1 Authentication Process 136

8.11.2 Association Process 137

8.11.3 Authenticated and Associated 137

8.11.4 Probing Phase 137

8.11.5 Authentication Phase 138

8.11.6 Association Phase 138

8.12 Wireless Tools 138

8.12.1 Basic Tools 139

8.12.2 Advanced Tools 139

8.13 Penetration Testing on 802.11 139

8.13.1 Installing the ORiNOCO NIC 140

8.13.2 Setting up the Sniffers 141

8.13.3 War Driving – The Fun Begins 142

8.13.4 The Penetration 143

8.13.5 Problems caused by Wireless Hackers 144

8.13.6 Security Recommendations 145

8.14 The 802.15 WPAN Standard (Bluetooth) 147

8.14.1 Overview of the 802.15 WPAN 147

8.14.2 High-Level View 148

8.14.3 The General Requirements of 802.15 150

8.14.4 How WPANs differ from WLANs 151

8.14.5 Power Levels and Coverage 152

8.14.6 Control of the Medium 152

8.14.7 Lifespan of the Network 154

8.14.8 802.15 Security 154

8.14.9 Authentication 156

8.15 The 802.16 Standard 158

8.16 Mobile IP 158

8.16.1 The Security of Mobile IP 158

9 RFID 161

9.1 Introduction 161

9.1.1 What are RFID Systems? 161

9.1.2 EAS Systems 162

9.1.3 Multibit EAS Tags 163

9.1.4 Summary of Limitations of RFID Technologies in their Current State of Development 168

9.1.5 What are Transponders? 168

9.1.6 How RFID Systems Work 178

10 Connecting the Last Mile 183

10.1 Introduction 183

10.2 LMDS 184

11 Wireless Information Security (W-INFOSEC) 187

11.1 Introduction 187

11.2 Public Key Infrastructure (PKI) 188

11.3 What is a PKI? 189

11.4 PKI and Other Security Methods 190

11.4.1 Username/Password 190

11.4.2 Biometrics 190

11.4.3 Tokens/Smart Cards 190

11.4.4 SSL Protected Messages 190

11.5 Digital Certificates 192

11.6 Wireless Transport Layer Security (WTLS) 193

11.6.1 WTLS 193

11.6.2 WAP 195

11.6.3 WEP 195

11.6.4 WPKI 199

11.7 Authentication and Integrity 201

11.8 Security Threats 202

11.8.1 Denial-of-Service Attack 202

11.8.2 Replay Attacks 202

11.8.3 Theft of Information or Passive Eavesdropping 203

11.8.4 Session-Stealing (for Theft of Information) Attack 203

11.8.5 Secure Tunneling 203

11.9 HIPAA (USA) 204

12 Convergence: 3RD Generation Technologies 205

12.1 CDMA2000 206

12.2 CDMA2000 Types 206

12.2.1 CDMA2000 1X 206

12.2.2 CDMA2000 1X EV-DO 206

12.2.3 CDMA2000 1X EV-DV 206

12.2.4 CDMA2000 3X 206

12.3 Operator Benefits of CDMA2000 207

12.3.1 Air Link 207

12.3.2 Optimized Throughput 207

12.3.3 Separation of Voice and Data 207

12.3.4 Stand-alone System 208

13 What Does the Future Hold for Wireless Technologies? 209

13.1 COPS 209

13.2 Will Wireless LANS Hurt 3G? 210

14 4th Generation 211

References 215

Acronyms and Abbreviations 217

Glossary 221

Index 229