The definitive guide to stability design criteria, fully updated and incorporating current research

Representing nearly fifty years of cooperation between Wiley and the Structural Stability Research Council, the Guide to Stability Design Criteria for Metal Structures is often described as an invaluable reference for practicing structural engineers and researchers. For generations of engineers and architects, the Guide has served as the definitive work on designing steel and aluminum structures for stability. Under the editorship of Ronald Ziemian and written by SSRC task group members who are leading experts in structural stability theory and research, this Sixth Edition brings this foundational work in line with current practice and research.

The Sixth Edition incorporates a decade of progress in the field since the previous edition, with new features including:

- **Updated chapters** on beams, beam-columns, bracing, plates, box girders, and curved girders. Significantly revised chapters on columns, plates, composite columns and structural systems, frame stability, and arches

- **Fully rewritten chapters** on thin-walled (cold-formed) metal structural members, stability under seismic loading, and stability analysis by finite element methods
State-of-the-art coverage of many topics such as shear walls, concrete filled tubes, direct strength member design method, behavior of arches, direct analysis method, structural integrity and disproportionate collapse resistance, and inelastic seismic performance and design recommendations for various moment-resistant and braced steel frames.

Complete with over 350 illustrations, plus references and technical memoranda, the Guide to Stability Design Criteria for Metal Structures, Sixth Edition offers detailed guidance and background on design specifications, codes, and standards worldwide.

HTTPS://WWW.WILEY.COM/EN-US/9780470085257

ABOUT THE AUTHOR

Ronald D. Ziemian, PhD, PE, professor of civil engineering at Bucknell University, was the recipient of the 2006 AISC Special Achievement Award and the 1992 ASCE Norman Medal for his work in advancing the use of nonlinear analysis in the stability design of steel structures. He is the coauthor of Matrix Structural Analysis, Second Edition (also from Wiley), chairs the SSRC Executive Committee and the AISC Task Committee 10 on Frame Stability, and further serves on the AISC and Aluminum Association specification committees.