State-of-the-art techniques for tapping the vast potential of polymers

The use of specific non-covalent interactions to control polymer structure and properties is a rapidly emerging field with applications in diverse disciplines. *Molecular Recognition and Polymers* covers the fundamental aspects and applications of molecular recognition—in the creation of novel polymeric materials for use in drug delivery, sensors, tissue engineering, molecular imprinting, and other areas. This reference begins by explaining the fundamentals of supramolecular polymers; it progresses to cover polymer formation and self-assembly with a wide variety of examples, and then includes discussions of biomolecular recognition using polymers.

With chapters contributed by the foremost experts in their fields, this resource:

- Provides an integrated resource for supramolecular chemistry, polymer science, and interfacial science
- Covers advanced, state-of-the-art techniques used in the design and characterization of non-covalent interactions in polymers
- Illustrates how to tailor the properties of polymeric materials for various applications

Stand-alone chapters address specific applications independently for easy reference. This is a premier resource for graduate students and researchers in polymer chemistry, supramolecular chemistry, materials science, and physical organic chemistry.
ABOUT THE AUTHOR

Vincent Rotello is the Goessmann Professor in the Department of Chemistry at the University of Massachusetts, Amherst. His research emphasizes achieving a fundamental understanding of supramolecular chemistry and applying it to issues in biology and nanoscience including delivery, sensing, and devices.

S. Thayumanavan is a Professor in the Department of Chemistry at the University of Massachusetts, Amherst. His research focuses on the design and synthesis of novel macromolecules (dendrimers and polymers) that have applications in chemistry, biology, and materials science. Examples of these applications include catalysis and transport, drug and gene delivery, and light harvesting and sensory materials.

For additional product details, please visit https://www.wiley.com/en-us