A timely, applications-driven text in thermodynamics

Materials Thermodynamics provides both students and professionals with the in-depth explanation they need to prepare for the real-world application of thermodynamic tools. Based upon an actual graduate course taught by the authors, this class-tested text covers the subject with a broader, more industry-oriented lens than can be found in any other resource available. This modern approach:

- Reflects changes rapidly occurring in society at large—from the impact of computers on the teaching of thermodynamics in materials science and engineering university programs to the use of approximations of higher order than the usual Bragg-Williams in solution-phase modeling

- Makes students aware of the practical problems in using thermodynamics

- Emphasizes that the calculation of the position of phase and chemical equilibrium in complex systems, even when properly defined, is not easy
Relegates concepts like equilibrium constants, activity coefficients, free energy functions, and Gibbs-Duhem integrations to a relatively minor role.

Includes problems and exercises, as well as a solutions manual.

This authoritative text is designed for students and professionals in materials science and engineering, particularly those in physical metallurgy, metallic materials, alloy design and processing, corrosion, oxidation, coatings, and high-temperature alloys.

ABOUT THE AUTHOR

Y. Austin Chang is Wisconsin Distinguished Professor Emeritus in the Department of Materials Science and Engineering at the University of Wisconsin–Madison. He is a member of the National Academy of Engineering, Foreign Member of the Chinese Academy of Sciences, and the recipient of many honors and awards, including the J. Willard Gibbs Award, the Gold Medal, and A. E. White Distinguished Teacher Award of ASM International, and the W. Hume-Rothery Award, John Bardeen Award, and the Educator Award, all awarded by The Minerals, Metals and Materials Society (TMS).

W. Alan Oates is a recipient of several awards, including the W. Hume-Rothery Award of TMS. Since 1992, Oates has held the position of Honorary Professor at the Science Research Institute, University of Salford, England.

SERIES

Wiley Series on Processing of Engineering Materials

For additional product details, please visit https://www.wiley.com/en-us