The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes:

- Basic Properties of Silicon
- Quantum Wells, Wires, Dots and Superlattices
- Absorption Processes in Semiconductors
- Light Emitters in Silicon
- Photodetectors, Photodiodes and Phototransistors
- Raman Lasers including Raman Scattering
- Guided Lightwaves
- Planar Waveguide Devices
- Fabrication Techniques and Material Systems
Silicon Photonics: Fundamentals and Devices outlines the basic principles of operation of devices, the structures of the devices, and offers an insight into state-of-the-art and future developments.

ABOUT THE AUTHOR

M. Jamal Deen completed a BSc degree at the University of Guyana (Guyana) and a PhD in Electrical Engineering and Applied Physics at Case Western Reserve University (USA). Professor Deen has been an assistant professor at Lehigh University, Bethlehem (USA) and was professor in the School of Engineering Science, Simon Fraser University, Vancouver (Canada). In 1999, he assumed his current position as Professor of Electrical and Computer Engineering, McMaster University, Hamilton (Canada). His current research interests include physics, modeling, reliability and parameter extraction of semiconductor devices; optical detectors and receivers, polymers and organic semiconductor devices, and low power, low-noise, high-frequency circuits. He is a Distinguished Lecturer of the IEEE- Electron Device Society, was awarded the 2002 Thomas D. Callinan Award from the Electrochemical Society, the Distinguished Researcher award, Province of Ontario and a Humboldt Research Award from the Alexander von Humboldt Foundation in 2006. In September 2008, he was awarded the prestigious Thomas W. Eadie medal by the Royal Society of Canada for his work on the modeling and noise of electronic and optoelectronic devices, with particular reference to silicon transistors and high-speed photodetectors.

Prasanta Kumar Basu obtained his BSc and his PhD from the University of Calcutta (India). He worked in the Institute of Radio Physics and Electronics, as a lecturer, then as a reader and finally as a professor. He served as the Head of the Department and he is now the Programme Coordinator of the Centre of Advanced Study in Radio Physics and Electronics at the University of Calcutta. Professor Basu worked as a Postdoctoral Fellow at the Catholic University, Leuven, Belgium, as an Alexander von Humboldt Fellow in Wuerzburg University, Germany and has been a visiting professor at McMaster University, Hamilton, Canada several times. Professor Basu’s research interests include semiconductor physics and devices, optoelectronics and optical communication, nanoelectronics and nanophotonics. He has more than 100 research publications in refereed journals and has authored a book Theory of Optical Processes in Semiconductors: Bulk and Microstructures.

SERIES

Wiley Series in Materials for Electronic & Optoelectronic Applications
To purchase this product, please visit https://www.wiley.com/en-us/9780470517505