Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells.

Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include:

- Morphology and Structure of Solid Acids
- Diffusion in Solid Proton Conductors by Nuclear Magnetic Resonance Spectroscopy
- Structure and Diffusivity by Quasielastic Neutron Scattering
- Broadband Dielectric Spectroscopy
- Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers
- Ab initio Modeling of Transport and Structure
- Perfluorinated Sulfonic Acids
- Proton-Conducting Aromatic Polymers
• Inorganic Solid Proton Conductors

Uniquely combining both organic (polymeric) and inorganic proton conductors, *Solid State Proton Conductors: Properties and Applications in Fuel Cells* provides a complete treatment of research on proton-conducting materials.

ABOUT THE AUTHOR

Philippe Knauth is Professor and Director of the Laboratoire Chimie Provence, University of Provence, Marseille, France. He has published 6 books, 2 European and 2 US patents, 200 publications, including 95 papers in international journals and 35 invited/plenary talks at international conferences.

Maria Luisa Di Vona is Assistant Professor in Chemistry at the Dipartimento di Scienze e Tecnologie Chimiche, Universita Degli Studi di RomaTor Vergata, Rome, Italy. She is also Visiting Professor at the University of Provence. Author of 100 publications, including 67 in international journals, 2 book chapters, 1 book (*Electroceramics VIII-2002*). Di Vona and Knauth were organizers of the 2009 E-MRS symposium "Materials for Polymer Electrolyte Membrane Fuel Cells".

To purchase this product, please visit https://www.wiley.com/en-us/9780470669372