Focusing on polarization matrix optics in many forms, this book includes coverage of a wide range of methods which have been applied to LCD modeling, ranging from the simple Jones matrix method to elaborate and high accuracy algorithms suitable for off-axis optics. Researchers and scientists are constantly striving for improved performance, faster response times, wide viewing angles, improved colour in liquid crystal display development, and with this comes the need to model LCD devices effectively. The authors have significant experience in dealing with the problems related to the practical application of liquid crystals, in particular their optical performance.

Key features:

- Explores analytical solutions and approximations to important cases in the matrix treatment of different LC layer configurations, and the application of these results to improve the computational method

- Provides the analysis of accuracies of the different approaches discussed in the book

- Explains the development of the Eigenwave Jones matrix method which offers a path to improved accuracy compared to Jones matrix and extended Jones matrix formalisms, while achieving significant improvement in computational speed and versatility compared to full 4x4 matrix methods

- Includes a companion website hosting the authors' program library LMOPTICS (FORTRAN 90), a collection of routines for calculating the optical characteristics of stratified media, the use of which allows for the easy implementation of the methods described in this
book. The website also contains a set of sample programs (source codes) using LMOPTICS, which exemplify the application of these methods in different situations.

ABOUT THE AUTHOR

Dmitry A. Yakovlev, Saratov State University, Russia

Dr Yakovlev is a senior researcher in the Department of Physics at Saratov State University, Russia. He is the head developer of commercial software MOUSE-LCD (MOdeling Universal System of Electrooptics of LCDs), developed in cooperation with HKUST, and the author of a number of efficient methods for computer modeling and optimization of LCDs used within many research projects performed in cooperation with Center Display Research of Hong Kong University of Science and Technology, ROLIC Research Ltd (Switzerland), TechnoDisplay AS (Norway. He has authored 30 refereed journal papers.

Vladimir G. Chigrinov, Hong Kong University of Science and Technology, Hong Kong

Professor Chigrinov is a member of the department of electrical and electronic engineering at Hong Kong University of Science and Technology. He is the author of 3 books, including Photoalignment of Liquid Crystalline Materials (with Professor Kwok), published by Wiley (2008). He has authored more than 150 refereed journal papers and holds 56 patents in the field of liquid crystals. He is a member of the editorial board of *Liquid Crystal Today* and Associate Editor of the *Journal of SID*. Prof. Chigrinov is Vice-President of the Russian SID chapter and a SID Fellow.

Hoi Sing Kwok, Hong Kong University of Science and Technology, Hong Kong

Professor Kwok is a member of the department of electrical and electronic engineering at Hong Kong University of Science and Technology. He is a fellow of the IEEE, Optical Society of America and the Hong Kong Institution of Engineers. Prof. Kwok is the co-author of *Photoalignment of Crystalline Materials* (Wiley, 2008) with Prof. Chigrinov and Vladimir M. Kozenkov, and has authored over 300 refereed journal papers.

RELATED RESOURCES

Instructor

View Instructor Companion Site