Electrochemistry is a discipline of wide scientific and technological interest. Scientifically, it explores the electrical properties of materials and especially the interfaces between different kinds of matter. Technologically, electrochemistry touches our lives in many ways that few fully appreciate; for example, materials as diverse as aluminum, nylon, and bleach are manufactured electrochemically, while the batteries that power all manner of appliances, vehicles, and devices are the products of electrochemical research. Other realms in which electrochemical science plays a crucial role include corrosion, the disinfection of water, neurophysiology, sensors, energy storage, semiconductors, the physics of thunderstorms, biomedical analysis, and so on.

This book treats electrochemistry as a science in its own right, albeit resting firmly on foundations provided by chemistry, physics, and mathematics. Early chapters discuss the electrical and chemical properties of materials from which electrochemical cells are constructed. The behavior of such cells is addressed in later chapters, with emphasis on the electrodes and the reactions that occur on their surfaces. The role of transport to and from electrodes is a topic that commands attention, because it crucially determines cell efficiency. Final chapters deal with voltammetry, the methodology used to investigate electrode behavior. Interspersed among the more fundamental chapters are chapters devoted to applications of electrochemistry: electrosynthesis, power sources, “green electrochemistry”, and corrosion.

Electrochemical Science and Technology is addressed to all who have a need to come to grips with the fundamentals of electrochemistry and to learn about some of its applications. It will constitute a text for a senior undergraduate or graduate course in electrochemistry. It also serves as a source of material of interest to scientists and technologists in various fields throughout academia,
industry, and government – chemists, physicists, engineers, environmentalists, materials scientists, biologists, and those in related endeavors.

This book:

• Provides a background to electrochemistry, as well as treating the topic itself.

• Is accessible to all with a foundation in physical science, not solely to chemists.

• Is addressed both to students and those later in their careers.

• Features web links (through www.wiley.com/go/EST) to extensive material that is of a more tangential, specialized, or mathematical nature.

• Includes questions as footnotes to support the reader’s evolving comprehension of the material, with fully worked answers provided on the web.

• Provides web access to Excel® spreadsheets which allow the reader to model electrochemical events.

• Has a copious Appendix of relevant data.

———

👉 ABOUT THE AUTHOR

Keith B. Oldham is Emeritus Professor at Trent University in Canada. His research interests are drawn from the fields of electrochemistry, applied mathematics and environmental issues focusing on the electrochemical applications of mathematical and computational techniques. He has co-authored several books, contributed to numerous others, and has published over 200 articles.

Alan Bond is based in the School of Chemistry at Monash University and teaches undergraduate electrochemistry and redox chemistry. His research focuses on applications of modern electroanalytical techniques to solve problems in inorganic, analytical and biological chemistry. He has authored over 500 papers, patents and books. Recipient of a Fulbright Fellowship (1972), the Rennie Medal (1975) of the Royal Australian Chemical Institute, the David Syme Prize (1977), the Analytical Chemistry Division Medal of the Royal Australian Chemical Institute (1989), the Stokes medal awarded by the Electrochemistry Division of the Royal Australian Chemical Institute (1992), the Liversidge Award (The Australian New Zealand Association for the Advancement of Science), the Federation of Asian Chemical Societies Foundation Lectureship (1993) and a range of other awards. Membership of Council of the Academy of Science and the Australian Research Council.
Jan Myland is a Research Associate within Professor Oldham's research group and has co-authored several books and accompanying software with Professor Oldham.

RELATED RESOURCES

Student

View Student Companion Site

For additional product details, please visit https://www.wiley.com/en-us