This book provides an in-depth guide to femtocell technologies

In this book, the authors provide a comprehensive and organized explanation of the femtocell concepts, architecture, air interface technologies, and challenging issues arising from the deployment of femtocells, such as interference, mobility management and self-organization. The book details a system level simulation based methodology addressing the key concerns of femtocell deployment such as interference between femto and macrocells, and the performance of both femto and macrocell layers. In addition, key research topics in interference modeling and mitigation, mobility management and Self-Organizing Network (SON) are highlighted. The authors also introduce HNB/HeNB standardization in 3GPP. Furthermore, access methods (closed, open and hybrid), applications, timing synchronization, health issues, business models and security are discussed. The authors also provide a comparison between femtocells and other indoor coverage techniques such as picocells, repeaters, distributed antenna systems and radio over fiber. Lastly, both CDMA and OFDMA based femtocells are covered.

Key Features:

• Provides a comprehensive reference on femtocells and related topics

• Offers the latest research results on femtocells based on simulation and measurements
• Gives an overview of indoor coverage techniques such as picocells, repeaters, distributed antenna systems, radio over fiber and femtocells

• Includes chapters on femtocell access network architecture, air interface technologies (GSM, UMTS, HSPA, WiMAX and LTE), femtocell simulation, interference analysis and mitigation in femto/macrocell networks, mobility management in femto/macrocell networks, femtocell self-organization and other key challenges such as timing synchronization and security faced by femtocell deployment

• Points to over 240 references from 3GPP, The Femto Forum, journals and conference proceedings

This book will be an invaluable guide for RF engineers from operators, R&D engineers from femtocells hardware manufacturers, employees from regulatory bodies, radio network planners, academics and researchers from universities and research organizations. Students undertaking wireless communications courses will also find this book insightful.

ABOUT THE AUTHOR

Jie Zhang is a professor of wireless communications and networks and the director of CWIND (Centre for Wireless Network Design, www.cwind.org) at the DCST (Department of Computer Science and Technology) of UoB (University of Bedfordshire). He joined UoB as a Senior Lecturer in 2002, becoming professor in 2006.

He received his PhD in industrial automation from East China University of Science and Technology (www.ecust.edu.cn), Shanghai, China, in 1995. From 1997 to 2001, he was a postdoctoral research fellow with University college London, Imperial College London, and Oxford University.

Guillaume de la Roche has been working as a research fellow at the Centre for Wireless Network Design (UK) since 2007. He received the Dipl-Ing in Telecommunication from the School of Chemistry Physics and Electronics (CPE Lyon), France, an MSc degree in Signal Processing (2003) and PhD in Wireless Communication (2007) from the National Institute of Applied Science (INSA Lyon), France.

Alvaro Valcarce obtained his MEng in telecommunications engineering from the University of Vigo (Spain) in 2006. During 2005 he worked at 'Telefonica I+D' in Madrid (Spain), integrating an applications-streaming platform into an 'ATG Dynamo Server', as well as developing a system for applications-on-demand'.

David Lopez-Perez received his bachelor and master degrees in telecommunication from Miguel Hernandez University, Elche, Alicante (Spain) in 2003 and 2006, respectively. He joined Vodafone Spain in 2005, working at the Radio Frequency department in
the area of network planning and optimization. He participated in the development of the Vodafone Automatic Frequency Planning tool for GSM and DCS networks.

Enjie Liu is a Senior Lecturer at the Department of Computer Science and Technology of the University of Bedfordshire. She joined UoB in 2003. She is a member of the Networking teaching group in the department and responsible for delivering both wired and wireless modules to undergraduates as well as post graduates. She received her PhD from Queen Mary College, University of London in 2002. Then she worked as research fellow with the Centre for Communication Systems Research (CCSR), the University of Surrey. She was grated a Newly Appointed Lecturers Award by The Nuffield Foundation.

Hui Song is a PhD student and research associate at the Center for Wireless Network Design (CWiND), University of Bedfordshire. His interests is network planning and optimization technologies. His current focus is on modeling OFDM fading channels. Before joining CWIND, he was the manager of eh technology department at Bynear Telecom Software Ltd, Shanghai, China. There he was responsible for developing and maintaining the nation-first network planning and optimization suite (including GSM, WCDMA and TD-SCDMA). Song holds a mathematics degree from Fudan University, Shanghai, China. He currently resides in the United Kingdom.

To purchase this product, please visit https://www.wiley.com/en-us/9780470742983