DESCRIPTION

The first book devoted exclusively to a highly popular, relatively new detection technique

Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques presents a comprehensive review of CAD theory, describes its advantages and limitations, and offers extremely well-informed recommendations for its practical use. Using numerous real-world examples based on contributors’ professional experiences, it provides priceless insights into the actual and potential applications of CAD across a wide range of industries.

Charged aerosol detection can be combined with a variety of separation techniques and in numerous configurations. While it has been widely adapted for an array of industrial and research applications with great success, it is still a relatively new technique, and its fundamental performance characteristics are not yet fully understood. This book is intended as a tool for scientists seeking to identify the most effective and efficient uses of charged aerosol detection for a given application. Moving naturally from basic to advanced topics, the author relates fundamental principles, practical uses, and applications across a range of industrial settings, including pharmaceuticals, petrochemicals, biotech, and more.

• Offers timely, authoritative coverage of the theory, experimental techniques, and end-user applications of charged aerosol detection

• Includes contributions from experts from various fields of applications who explore CAD’s advantages over traditional HPLC techniques, as well its limitations
• Provides a current theoretical and practical understanding of CAD, derived from authorities on aerosol technology and separation sciences

• Features numerous real-world examples that help relate fundamental properties and general operational variables of CAD to its performance in a variety of conditions

Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques is a valuable resource for scientists who use chromatographic techniques in academic research and across an array of industrial settings, including the biopharmaceutical, biotechnology, biofuel, chemical, environmental, and food and beverage industries, among others.

ABOUT THE AUTHOR

PAUL H. GAMACHE is Director of Research and Development at Thermo Fisher Scientific. He has more than thirty years' experience within the analytical instrument industry. His primary area of expertise is in the development of instrumentation and techniques based on liquid chromatography. He has published more than 50 articles and book chapters including the first publication describing commercial CAD technology. In 2005 he was co-awardee of an NIH Metabolomics Roadmap research grant.

To purchase this product, please visit https://www.wiley.com/en-us/9780470937785