In order to successfully compete as a sustainable energy source, the value of biomass must be maximized through the production of valuable co-products in the biorefinery. Specialty chemicals and other biobased products can be extracted from biomass prior to or after the conversion process, thus increasing the overall profitability and sustainability of the biorefinery.

_Biorefinery Co-Products_ highlights various co-products that are present in biomass prior to and after processing, describes strategies for their extraction, and presents examples of bioenergy feedstocks that contain high value products.

Topics covered include:

- Bioactive compounds from woody biomass
- Phytochemicals from sugar cane, citrus waste and algae
- Valuable products from corn and other oil seed crops
- Proteins from forages
- Enhancing the value of existing biomass processing streams

Aimed at academic researchers, professionals and specialists in the bioenergy industry, _Biorefinery Co-Products_ is an essential text for all scientists and engineers working on the efficient separation, purification and manufacture of value-added biorefinery co-products.
ABOUT THE AUTHOR

Dr D. Julie Carrier is a Professor in Biological and Agricultural Engineering at the University of Arkansas. Her current research is aimed at extracting valuable chemical components from biomass. She has been working in this field for 10 years, accumulating over 50 peer-reviewed papers. In addition to her research, she teaches courses on properties of biological materials and biotechnology/bioprocessing. She has authored over 50 peer reviewed journal articles and 2 book chapters.

Danielle Julie Carrier, Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.

Shri Ramaswamy, Department of Bioproducts and Biosystems Engineering, Kaufert Lab, University of Minnesota, Saint Paul, Minnesota, USA.