A powerful methodology for producing superior thermal performance at low cost with minimum added mass . . .

Here is the only available comprehensive treatment of the design and analysis of heat sinks. It provides all the theoretical and practical information necessary to successfully design and/or select cost-effective heat sinks for electronic equipment. The presentation includes detailed explanations of the governing heat transfer phenomena, complete coverage of thermal modeling tools for geometrically complex fin structures, and extensive discussion on recognizing thermal optimization opportunities.

Other topics covered include:

* Fundamentals of heat transfer
* Thermal modeling of electronic packages
* Mathematical tools for heat-sink analysis and design
* Prevailing thermal transport processes
* Models for a variety of fin geometries
* Simple "transfer function" relations for single fin, cascaded fin, and fin array heat sinks
* Thermal characterization and optimization of plate-fin heatsinks
Completely self-contained and filled with valuable information not available from any other single source, Design and Analysis of Heat Sinks is both a superior reference for accomplished thermal specialists and an excellent textbook for graduate courses in advanced thermal applications for mechanical engineering students. This book can also serve as a text in thermal science for students of electrical engineering.

ABOUT THE AUTHOR

ALLAN D. KRAUS is Principal Associate of Allan D. Kraus Associates, a consulting firm in Pacific Grove, California. He is a former faculty member in the Electrical Engineering Department of the Naval Postgraduate School in Monterey, California.

AVRAM BAR-COHEN is Professor and Director of the Thermodynamics and Heat Transfer Division in the Mechanical Engineering Department of the University of Minnesota.

SERIES

Thermal Management of Microelectronic and Electronic System Series

For additional product details, please visit https://www.wiley.com/en-us