William J. Palm has revised *Modeling, Analysis, and Control of Dynamic Systems*, an introduction to dynamic systems and control. The first six chapters cover modeling and analysis techniques, and treat mechanical, electrical, fluid, and thermal systems. Transfer functions, frequency response, and Laplace-transform solution of differential equations are also covered. The last five chapters cover the fundamentals and applications of control systems, classical methods for control system design, based on the root locus and frequency response plots; and modern design techniques based on state space methods. Optional sections at the end of each chapter introduce Matlab commands and applications relevant to the chapter’s topics. Four appendices summarize Fourier series, Mason's rule, the Routh array, units, and physical constants.

ABOUT THE AUTHOR

RELATED RESOURCES

Instructor
NEW TO EDITION

- **Expanded Modeling Coverage.** Expanded to four chapters for more in-depth coverage. Reviewers praised the rich repertoire of engineering examples and the clear writing that relates the math methods to the real world.

- **Integrated Application of the Laplace Transform.** The students are shown the need for and the power of Laplace transform response techniques by introducing them as needed in the context of engineering applications.

- **Expanded Coverage of Vibrations.** In addition to extensive modeling coverage of vibrating systems, new sections deal with modes of vibration, and the design of vibration absorbers, isolators, and vehicle suspensions.

- **Case Studies.** In-depth treatment of practical engineering applications such as motion control system design, electromechanical system design, vehicle suspension design, and aircraft response modes.

- **Sensitivity and Robust Control.** New emphasis on sensitivity methods gives the students a better appreciation of robust feedback control system design.

- **Simplified Digital Control Coverage.** Coverage of digital control without the need for time-consuming development of the z-transform.

- **New Chapter Structure.** Chapter Overview and Chapter Objectives at the beginning of each chapter show why the chapter is important and what the student should be able to do after completing the chapter. Chapter Summary and Review of Objectives at the end of each chapter reinforce the material.

- **More Homework Problems.** Numerous homework problems have been added, and many of these are design problems emphasizing computer applications.

FEATURES

- **Extensive Modeling and Controls Coverage.** Covers more controls than competing systems dynamics titles, and more modeling than competing controls titles.
• **Emphasizes Engineering Design.** Text emphasizes engineering design and provides case studies, design examples, problems and extensive hardware coverage.

• **Both Classical and Modern Control Coverage.** Offers optional coverage of both classical and modern control methods arranged so that instructors can pick and choose topics of interest to them.

• **Electrical and Mechanical Devices.** Provides more coverage of electrical and mechanical devices, such as motors, op amps, drive systems, and suspension elements, than the competition.

• **Optional Matlab Coverage.** Each chapter offers an introduction to Matlab commands that are relevant to the chapter’s topics and illustrates its use with appropriate applications. The Matlab coverage is self-contained and can be skipped if Matlab is not used. No previous background in Matlab is required and no supplementary Matlab text is needed.

For additional product details, please visit https://www.wiley.com/en-us