DESCRIPTION

A complete, up-to-date textbook on an increasingly important subject

Robust Systems Theory and Applications covers both the techniques used in linear robust control analysis/synthesis and in robust (control-oriented) identification. The main analysis and design methods are complemented by elaborated examples and a group of worked-out applications that stress specific practical issues: nonlinearities, robustness against changes in operating conditions, uncertain infinite dimensional plants, and actuator and sensor limitations. Designed expressly as a textbook for master's and first-year PhD students, this volume:

* Introduces basic robustness concepts in the context of SISO systems described by Laplace transforms, establishing connections with well-known classical control techniques

* Presents the internal stabilization problem from two different points of view: algebraic and state-space

* Introduces the four basic problems in robust control and the Loopshaping design method. Presents the optimal $\|\cdot\|_2$ control problem from a different viewpoint, including an analysis of the robustness properties of $\|\cdot\|_2$ controllers and a treatment of the generalized $\|\cdot\|_2$ problem

* Presents the $\|\cdot\|_2$ control problem using both the state-space approach developed in the late 1980s and a Linear Matrix Inequality approach (developed in the mid 1990s) that encompasses more general problems
Discusses more general types of uncertainties (parametric and mixed type) and γ-synthesis as a design tool

Presents an overview of optimal ℓ_1 control theory and covers the fundamentals of its star-norm approximation

Presents the basic tools of model order reduction

Provides a tutorial on robust identification

Offers numerous end-of-chapter problems and worked-out examples of robust control

ABOUT THE AUTHOR

RICARDO S. SANCHEZ-PEña, MSEE, PhD, is a researcher at the National Commission of Space Activities (CONAE) and Professor of Control Systems at the School of Engineering at the University of Buenos Aires, Argentina.

MARIO SZNAIER, MSEE, PhD, is an Associate Professor in the Department of Electrical Engineering at Pennsylvania State University, University Park, USA.

SERIES

Adaptive and Cognitive Dynamic Systems: Signal Processing™ Learning™ Communications and Control

To purchase this product, please visit https://www.wiley.com/en-us/9780471176275