DESCRIPTION

The scientific understanding of pain mechanisms has increased dramatically in the last few years, and, in turn, so has the need for a comprehensive volume on the molecular biology of pain and the development of analgesic drugs. Molecular Basis of Pain Induction provides a much-needed reference that covers a broad spectrum of issues while focusing on the molecular aspects of pain and the most recent genetic studies.

This volume reviews the numerous recent advances in the molecular aspects of pain that have aided in the development of analgesic drugs. In such a rapidly growing area of biology, it is essential to thoroughly comprehend how genes involved in pain are identified and whether any new drugs have resulted from pain studies. The development and function of nociceptors is one of the outcomes of these vital molecular genetic studies, and this text reviews the activation of nociceptors by a variety of chemical, thermal, and mechanical stimuli. Some of the other fascinating topics discussed in Molecular Basis of Pain Induction are:

* Properties and advances in the study of pain-sensing sensory neurons (nociceptors)
* The use of mouse null mutants for the study of problems in genetic background and behavioral research
* Insights gained from genetic studies in worms and flies that have aided in the understanding of human sensory neuron function
* The detection of noxious mechanical damage
* Bradykinin, which evokes pain, and opioid peptides, which block pain
Containing an abundance of useful illustrations and photos to accompany this indispensable text, Molecular Basis of Pain Induction is a resourceful guide for cell and molecular biologists, researchers in pharmaceutical companies, and neuroscientists alike.

ABOUT THE AUTHOR

John Nicholas Wood FRS is a British neurobiologist, and Head of the Molecular Nociception Group, at University College London.

To purchase this product, please visit https://www.wiley.com/en-us/9780471346074