DESCRIPTION

A comprehensive and rigorous introduction to thermal system design from a contemporary perspective.

Thermal Design and Optimization offers readers a lucid introduction to the latest methodologies for the design of thermal systems and emphasizes engineering economics, system simulation, and optimization methods. The methods of exergy analysis, entropy generation minimization, and thermoeconomics are incorporated in an evolutionary manner.

This book is one of the few sources available that addresses the recommendations of the Accreditation Board for Engineering and Technology for new courses in design engineering. Intended for classroom use as well as self-study, the text provides a review of fundamental concepts, extensive reference lists, end-of-chapter problem sets, helpful appendices, and a comprehensive case study that is followed throughout the text.

Contents include:

* Introduction to Thermal System Design
* Thermodynamics, Modeling, and Design Analysis
* Exergy Analysis
* Heat Transfer, Modeling, and Design Analysis
* Applications with Heat and Fluid Flow
* Applications with Thermodynamics and Heat and Fluid Flow

* Economic Analysis

* Thermoeconomic Analysis and Evaluation

* Thermoeconomic Optimization

Thermal Design and Optimization offers engineering students, practicing engineers, and technical managers a comprehensive and rigorous introduction to thermal system design and optimization from a distinctly contemporary perspective. Unlike traditional books that are largely oriented toward design analysis and components, this forward-thinking book aligns itself with an increasing number of active designers who believe that more effective, system-oriented design methods are needed.

Thermal Design and Optimization offers a lucid presentation of thermodynamics, heat transfer, and fluid mechanics as they are applied to the design of thermal systems. This book broadens the scope of engineering design by placing a strong emphasis on engineering economics, system simulation, and optimization techniques. Opening with a concise review of fundamentals, it develops design methods within a framework of industrial applications that gradually increase in complexity. These applications include, among others, power generation by large and small systems, and cryogenic systems for the manufacturing, chemical, and food processing industries.

This unique book draws on the best contemporary thinking about design and design methodology, including discussions of concurrent design and quality function deployment. Recent developments based on the second law of thermodynamics are also included, especially the use of exergy analysis, entropy generation minimization, and thermoeconomics. To demonstrate the application of important design principles introduced, a single case study involving the design of a cogeneration system is followed throughout the book.

In addition, Thermal Design and Optimization is one of the best new sources available for meeting the recommendations of the Accreditation Board for Engineering and Technology for more design emphasis in engineering curricula.

Supported by extensive reference lists, end-of-chapter problem sets, and helpful appendices, this is a superb text for both the classroom and self-study, and for use in industrial design, development, and research. A detailed solutions manual is available from the publisher.
ABOUT THE AUTHOR

ADRIAN BEJAN is J. A. Jones Professor of Mechanical Engineering at Duke University. He is author of Convection Heat Transfer, Second Edition; Advanced Engineering Thermodynamics; and Heat Transfer; all published by Wiley.

GEORGE TSATSARONIS is BEWAG Professor of Energy Conversion and Protection of the Environment at the Technical University of Berlin.

MICHAEL MORAN is Professor of Mechanical Engineering at The Ohio State University. He is coauthor (with Howard N. Shapiro) of Fundamentals of Engineering Thermodynamics, now in its third edition and published by Wiley. He is also the author of Availability Analysis: A Guide to Efficient Energy Use.

For additional product details, please visit https://www.wiley.com/en-us