DESCRIPTION

A skillful balance of theoretical considerations and practical know-how

Backed by a team of expert contributors, the Second Edition of this highly acclaimed publication brings a solid understanding of impedance spectroscopy to students, researchers, and engineers in physical chemistry, electrochemistry, and physics. Starting with general principles, the book moves on to explain in detail practical applications for the characterization of materials in electrochemistry, semiconductors, solid electrolytes, corrosion, solid-state devices, and electrochemical power sources. The book covers all of the topics needed to help readers identify whether impedance spectroscopy may be an appropriate method for their particular research problem.

The book helps readers quickly grasp how to apply their new knowledge of impedance spectroscopy methods to their own research problems through the use of unique features such as:

* Step-by-step instructions for setting up experiments and then analyzing the results
* Theoretical considerations for dealing with modeling, equivalent circuits, and equations in the complex domain
* Best measurement methods for particular systems and alerts to potential sources of errors
* Equations for the most widely used impedance models
* Figures depicting impedance spectra of typical materials and devices
* Extensive references to the scientific literature for more information on particular topics and current research
This Second Edition incorporates the results of the last two decades of research on the theories and applications of impedance spectroscopy. Most notably, it includes new chapters on batteries, supercapacitors, fuel cells, and photochromic materials. A new chapter on commercially available measurement systems reflects the emergence of impedance spectroscopy as a mainstream research tool.

With its balanced focus on both theory and practical problem solving, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition serves as an excellent graduate-level textbook as well as a hands-on guide and reference for researchers and engineers.

ABOUT THE AUTHOR

EVGENIJ BARSOUKOV, PhD, is a Senior Application Engineer at Texas Instruments, Inc. His current research focuses on the application of impedance spectroscopy–based modeling to improve battery monitoring technology.

J. ROSS MACDONALD, DSc, is the William Rand Kenan, Jr., Professor Emeritus of Physics at The University of North Carolina. He has published more than 200 papers in the fields of physics, chemistry, applied mathematics, and electrical engineering, and he was the editor of the First Edition of Impedance Spectroscopy (Wiley). His current research uses impedance spectroscopy to help analyze the electrical response of high-resistivity ionically conducting solid materials.

For additional product details, please visit https://www.wiley.com/en-us