Nonlinear Solid Mechanics: A Continuum Approach for Engineering

Gerhard A. Holzapfel

Paperback ISBN: 978-0-471-82319-3 April 2000 $89.50

DESCRIPTION

Nonlinear Solid Mechanics a Continuum Approach for Engineering Gerhard A. Holzapfel Graz University of Technology, Austria

With a modern, comprehensive approach directed towards computational mechanics, this book covers a unique combination of subjects at present unavailable in any other text. It includes vital information on 'variational principles' constituting the cornerstone of the finite element method. In fact this is the only method by which Nonlinear Solid Mechanics is utilized in engineering practice. The book opens with a fundamental chapter on vectors and tensors. The following chapters are based on nonlinear continuum mechanics - an inevitable prerequisite for computational mechanicians. In addition, continuum field theory (applied to a representative sample of hyperelastic materials currently used in nonlinear computations such as incompressible and compressible materials) is presented, as are transversely isotropic materials, composite materials, viscoelastic materials and hyperelastic materials with isotropic damage. Another central chapter is devoted to the thermodynamics of materials, covering both finite thermoelasticity and finite thermoviscoelasticity. Also included are:

* an up-to-date list of almost 300 references and a comprehensive index

* useful examples and exercises for the student

* selected topics of statistical and continuum thermodynamics.

Furthermore, the principle of virtual work (in both the material and spatial descriptions) is compared with two and three-field variational principles particularly designed to capture kinematic constraints such as incompressibility. All of the features combined result in an
essential text for final year undergraduates, postgraduates and researchers in mechanical, civil and aerospace engineering and applied maths and physics.

ABOUT THE AUTHOR

FEATURES

• Provides many examples and exercises.

• Comprehensive, modern approach directed towards computational mechanics.

For additional product details, please visit https://www.wiley.com/en-us