Microwave Devices, Circuits and Subsystems for Communications Engineering
Ian A. Glover (Editor), Steve Pennock (Editor), Peter Shepherd (Editor)

DESCRIPTION

Microwave Devices, Circuits and Subsystems for Communications Engineering provides a detailed treatment of the common microwave elements found in modern microwave communications systems. The treatment is thorough without being unnecessarily mathematical. The emphasis is on acquiring a conceptual understanding of the techniques and technologies discussed and the practical design criteria required to apply these in real engineering situations.

Key topics addressed include:

* Microwave diode and transistor equivalent circuits
* Microwave transmission line technologies and microstrip design
* Network methods and s-parameter measurements
* Smith chart and related design techniques
* Broadband and low-noise amplifier design
* Mixer theory and design
* Microwave filter design
* Oscillators, synthesisers and phase locked loops
Each chapter is written by specialists in their field and the whole is edited by experience authors whose expertise spans the fields of communications systems engineering and microwave circuit design.

Microwave Devices, Circuits and Subsystems for Communications Engineering is suitable for senior electrical, electronic or telecommunications engineering undergraduate students, first year postgraduate students and experienced engineers seeking a conversion or refresher text.

* Includes a companion website featuring:
 * Solutions to selected problems
 * Electronic versions of the figures
 * Sample chapter

ABOUT THE AUTHOR

Dr. Ian A Glover is a Senior Lecturer. Research interests: radio science, microwave radio propagation, channel measurements and modelling, and digital communications coding and modulation. He is co-author of the successful book Digital Communications.

Dr. Steve R. Pennock is a Senior Lecturer. Research interests: microwave engineering and communications, inset dielectric guide antennas and subsystems, monolithic microwave integrated circuits, flared slot antennas, discontinuities and non-uniformities in transmission lines and millimetre wave propagation effects.

Dr. Peter R. Shepherd is a Senior Lecturer and First Year Course Director. Research interests: microwave engineering and communications, inset dielectric guide antennas and subsystems, monolithic microwave integrated circuits, flared slot antennas, discontinuities and non-uniformities in transmission lines, millimetre wave propagation effects, and mixed signal integrated circuits.

For additional product details, please visit https://www.wiley.com/en-us