Antimony, arsenic, bismuth, germanium, lead, selenium, tellurium and tin just some of the elements which, in trace amounts, have biological, environmental and technological importance. Hydride Generation Atomic Absorption Spectrometry describes one of the most accurate analytical techniques for trace analysis of these elements, sensitive to picogram levels. Over the last decade, significant instrumental and methodological progress has led to HG-AAS being widely applied to an extensive range of sample types. In this first comprehensive monograph on HG-AAS, the authors treat both theoretical and experimental aspects of the subject in a critical and in-depth manner. Hydride Generation Atomic Absorption Spectrometry is divided into two parts, with the theoretical background and experimental approach covered in Part I. Part II discusses the methodology and analytical applications to a wide range of fields, arranged in an easy to use element-by-element format. Over 1500 references provide an exhaustive coverage of the vast literature on HG-AAS, making Hydride Generation Atomic Absorption Spectrometry the premier reference source on this important technique. Hydride Generation Atomic Absorption Spectrometry will be an invaluable reference work for all analysts using hydride generation for AAS or for other spectrometric methods. It will also be of great interest to researchers and students working in atomic spectrometry and trace analysis.
About the Authors Jiří Dědina studied physical chemistry at Charles University in Prague. After obtaining his PhD from the Czechoslovak Academy of Sciences in 1975, his research has focused on trace element analysis. He is currently a head of the Laboratory of Trace Element Analysis of the Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, and has worked in the field of hydride generation for over fifteen years. He has authored a series of papers on hydride generation, the mechanism of hydride atomization in quartz-tube atomizers and on the graphite furnace atomizer. His main scientific interests lie in the application of hydride generation for atomic spectrometry and fundamental processes occurring in hydride atomizers employed for AAS and AFS. Dimiter L. Tsalev studied chemical engineering in Sofia and Moscow and obtained his PhD in analytical chemistry from Moscow State University, Russia. Since 1972 he has been a staff member of the Faculty of Chemistry, University of Sofia, Bulgaria. Professor Tsalev has lectured on environmental and advanced analytical chemistry and atomic absorption spectrometry. He has published over seventy articles and eight patents, and has authored or co-authored six monographs. He has given numerous invited lectures at scientific conferences and seminars on AAS, chemical modification, vapor generation techniques, trace element preconcentration and analytical methodology in environmental and occupational health practice.