Physical Chemistry of Non-aqueous Solutions of Cellulose and Its Derivatives
Vera V. Myasoedova


DESCRIPTION

Cellulose is the most abundant organic polymer on earth. In solution, cellulose derivatives can form liquid crystals which take on characteristics of the solid state with unique optical and physico-mechanical properties. The author presents an overview of modern developments in the physical chemistry of solutions of cellulose and its derivatives. Physical Chemistry of Non-aqueous Solutions of Cellulose and Its Derivatives discusses:

* how experimental data and computer simulation can give insight into the factors which influence the interaction of solvent and solute

* how phase transitions in solution can be predicted from the solvency of non aqueous solvents for cellulose and its derivatives

* the methods for obtaining thermodynamic parameters for solvation in non-aqueous solvents

* the rheological properties of lyotropic liquid crystals.

The Wiley Series in Solution Chemistry fills the increasing need to present authoritative comprehensive and fully up-to-date accounts of the many aspects of solution chemistry. Internationally recognized experts from research or teaching institutions in various countries are invited to contribute to the series.
ABOUT THE AUTHOR

Vera V. Myasoedova is the author of Physical Chemistry of Non-aqueous Solutions of Cellulose and Its Derivatives, published by Wiley.

SERIES

Wiley Series in Solutions Chemistry

For additional product details, please visit https://www.wiley.com/en-us