Incorporating recent developments in control and systems research, Linear Control Theory provides the fundamental theoretical background needed to fully exploit control system design software. This logically-structured text opens with a detailed treatment of the relevant aspects of the state space analysis of linear systems. End-of-chapter problems facilitate the learning process by encouraging the student to put his or her skills into practice.

Features include:

* The use of an easy to understand matrix variational technique to develop the time-invariant quadratic and LQG controllers

* A step-by-step introduction to essential mathematical ideas as they are needed, motivating the reader to venture beyond basic concepts

* The examination of linear system theory as it relates to control theory

* The use of the PBH test to characterize eigenvalues in the state feedback and observer problems rather than its usual role as a test for controllability or observability

* The development of model reduction via balanced realization

* The employment of the L2 gain as a basis for the development of the H∞ controller for the design of controllers in the presence of plant model uncertainty
Senior undergraduate and postgraduate control engineering students and practicing control engineers will appreciate the insight this self-contained book offers into the intelligent use of today's control system software tools.

ABOUT THE AUTHOR

Frederick Walker Fairman is the author of Linear Control Theory: The State Space Approach, published by Wiley.

To purchase this product, please visit https://www.wiley.com/en-us/9780471974895