DESCRIPTION

Expertise in electrolyte systems has become increasingly important in traditional CPI operations, as well as in oil/gas exploration and production. This book is the source for predicting electrolyte systems behavior, an indispensable "do-it-yourself" guide, with a blueprint for formulating predictive mathematical electrolyte models, recommended tabular values to use in these models, and annotated bibliographies. The final chapter is a general recipe for formulating complete predictive models for electrolytes, along with a series of worked illustrative examples. It can serve as a useful research and application tool for the practicing process engineer, and as a textbook for the chemical engineering student.

ABOUT THE AUTHOR

The late Joseph F. Zemaitis, Jr. was President of Chem Solve, Inc. Prior to the formation of Chem Solve, he was Vice-President of OLI Systems, Inc. Dr. Semaitis worked for 9 years at ESSO Research Engineering as Principal Consultant in fluid dynamics and engineering technology. A graduate of Drexel Tech, he received his M.S. and Ph.D. from Carnegie-Mellon University. He was a Lecturer in Physics at Drew University and Mathematics at the County College of Morris. Dr. Zemaitis was a member of AICHE, ACS and AAPT.

Diane M. Clark is presently a Senior Scientist at OLI System, Inc. Prior to this she worked for Chem Solve, Inc. She received a B.S. in Mathematics and Computer Science from Clarkson College of Technology (now Clarkson University) and is a member of AICHE.
Marshal Rafal is President and founder of OLI Systems, Inc. a world leader in computer software for simulation of aqueous chemistry. Prior to founding OLI in 1971, Dr. Rafal worked at ESSO Mathematics and Systems, Inc. for five years. He received a B.Ch.E. from the Cooper Union and an M.S. Ch.E. and Ph.D. from Northwestern University. Dr. Rafal is a member of AICHE.

Noel C. Scrivner, as a Senior Consultant at the Du Pont Company, consults on the problems of thermodynamics and kinetics company-wide. His current interest is in the application of electrolyte thermodynamics to geochemistry problems. He received a B.A. and a B.S. from Rice University and an M.S. and Ph.D. from Carnegie-Mellon University—all in Chemical Engineering. He is currently chairman of the Design Institute for Physical Property Data (DIPPR) Aqueous Electrolyte Thermodynamic Database project. He is member of AICHE, ACS, Sigma Xi, and American Geophysical Union.

For additional product details, please visit https://www.wiley.com/en-us