Theory of Computational Complexity, 2nd Edition

Ding-Zhu Du, Ker-I Ko

Hardcover ISBN: 978-1-118-30608-6 June 2014 $134.25

DESCRIPTION

Praise for the First Edition

"...complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." - Zentralblatt MATH

A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered.

Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as:

• A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science

• Additional exercises at varying levels of difficulty to further test comprehension of the presented material

• End-of-chapter literature reviews that summarize each topic and offer additional sources for further study
Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.

A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered.

Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as:

• A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science
• Additional exercises at varying levels of difficulty to further test comprehension of the presented material
• End-of-chapter literature reviews that summarize each topic and offer additional sources for further study

Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.

ABOUT THE AUTHOR

DING-ZHU DU, PhD, is Professor in the Department of Computer Science at the University of Texas at Dallas. He has published over 180 journal articles in his areas of research interest, which include design and analysis of approximation algorithms for
combinatorial optimization problems and communication networks. Dr. Du is also the coauthor of *Problem Solving in Automata, Languages, and Complexity*, also published by Wiley.

KER-I KO, PhD, is Professor in the Department of Computer Science at National Chiao Tung University, Taiwan. He has published extensively in his areas of research interest, which include computational complexity theory and its applications to numerical computation. Dr. Ko is also the coauthor of *Problem Solving in Automata, Languages, and Complexity*, also published by Wiley.

For additional product details, please visit https://www.wiley.com/en-us